
Virtual Keymysteries Unveiled: Detecting
Keystrokes in VR with External Side-Channels

Hossein Khalili1, Alexander Chen1, Theodoros Papaiakovou1, Timothy Jacques1, Hao-Jen Chien1

Changwei Liu2, Aolin Ding2, Amin Hass2, Saman Zonouz3, Nader Sehatbakhsh1

1SsysArch Lab, ECE Department, University of California, Los Angeles, CA, USA
2Cyber Lab, Accenture Labs, Accenture Cyber Fusion Center, Arlington, Virginia, USA

3CPSec Lab, SCP Department, Georgia Institute of Technology, Atlanta, GA, USA

Abstract—AR/VR devices are becoming prevalent, permeating
different facets of our daily lives. Nevertheless, this prevalence
presents fresh security and privacy hurdles as users increasingly
employ these devices to manage sensitive data such as passwords,
personal information, and financial data in potentially insecure
settings. Due to these concerns, there has been an increasing
trend in the literature to analyze security and privacy threats
for AR/VR by proposing novel attack strategies. While effective
and worrisome, the existing body of work has focused mostly on
internal threats for AR/VR devices, such as malicious sensors,
apps, or firmware. However, in this paper, we focus on a new
facet of this body of research by designing an external attacker.
The key observation is that although the virtual world remains
concealed from an external observer (i.e., an adversary), the
physical interactions required to input commands into the VR
world are observable and create a side channel. Building upon
this finding, we conduct a practical attack, named LensHack, on
Quest 2 VR devices. By employing our algorithm and an external
camera (Blink), we capture and analyze the interactions between
the user and the device, successfully extracting typed characters
with over 80% accuracy.

I. INTRODUCTION

AR/VR devices have become commonplace and integrated
into many parts of our lives. They provide engaging and
interactive experiences, changing the way we approach sev-
eral fields such as gaming, education, healthcare, and enter-
tainment. With wearable headsets and mobile apps, AR/VR
devices are increasingly accessible, improving our interactions
with digital content and transforming our perspectives on the
world [1], [2], [3], [4], [5], [6].

The surge in AR/VR device popularity, however, brings
forth unavoidable security and privacy vulnerabilities as users
handle sensitive data via these devices. Consequently, akin to
prevailing computing models, AR/VR devices are prone to
diverse software, network, mobile, and sensor attacks. Indeed,
a comprehensive array of attacks has already been directed at
numerous aspects of AR/VR devices [7], [8], [9], [10], [11],
[12]. This emerging attack category is highly domain-focused,
capitalizing on distinctive AR/VR device traits (e.g., seamless
sensor-computation fusion, diverse sensor modalities, etc.).

Existing attack scenarios, however, have mainly focused
on addressing internal threats to VR/AR devices. This refers
to situations where an adversary has somehow infiltrated

the system, such as its firmware, software, sensors, or
other combinations. As a result, they can initiate diverse
forms of confidentiality-integrity-availability and/or privacy
attacks [13], [14], [9]. In contrast to this existing line of
research, as shown recently [15], [16], AR/VR devices are
also distinctively susceptible to an external attacker, where
a bystander (a human attacker and/or a digital camera) can
record and dissect a user’s (victim’s) interactions with the
AR/VR device. This allows for the extraction of sensitive data
like keystrokes, passwords, and more. The comparison aligns
with external attacks on different computing models (e.g., IoT
devices) where an attacker sniffs packets or executes a physical
side-channel attack.

For assessing the practicality of this attack in real-life
situations, we create LensHack, a new attack approach for
deriving keystrokes via analyzing recorded frames from an
external camera. In Section II, we initially outline our threat
model and assumptions, followed by an in-depth explanation
of the attack strategy in Section III.

We evaluate our attack strategy in real-world setups using a
Meta Quest 2 VR device and a small indoor security camera
(Amazon Blink). We study the robustness of LensHack under
different setups (distance and angle).

In short, the contributions of this paper are as follows:

• We present a new attack strategy, LensHack, that lever-
ages an external camera to record videos and analyzes
the videos to infer keystrokes.

• A proof-of-concept implementation of the attack using
Meta Quest 2 under various configurations.

II. PROBLEM STATEMENT

Overview. For a more systematic assessment of potential
dangers, a typical indoor setup for an AR/VR device is
illustrated in Figure 1. AR/VR devices commonly have a
headset and hand controllers (B, C). They may be wired to
an interface box or even a PC (D, E). Alternatively, they
might interact with a tracking pad (F), a camera (A), or a
PC (E). The room might have other external sensors such as
a security camera (A) and/or routers or computers (E). Given
the provided setup, three categories of attacks exist:

Ⓐ
Ⓐ

ⒷⒸ

Ⓓ

Ⓔ

Ⓕ

Fig. 1: Main components of an AR/VR system (A) cameras,
(B) controllers, (C) VR headset, (D) interface box (if needed),
(E) PC and/or router, (F) tracked workspace (if needed).

• (Apps/Software) The most prevalent type of attack on
AR/VR devices is when a malicious app is co-located
with the victim’s device [9], [17], [18], [19], [20]. The
goal of the app is typically either stealing some sensitive
information and/or causing integrity and/or availability
attacks. The malicious app usually infiltrates the device
using common techniques for installing malware. Once it
is installed, the app is activated and executes its malicious
payload (usually in the background and stealthy).

• (Hardware/Sensor) Another common type of attack on
AR/VR devices is to manipulate its hardware and/or
OS/firmware [21], [11], [12], [13], [22]. Considering that
AR/VR devices heavily depend on diverse sensors, adver-
saries are afforded a broad spectrum of chances to target
these sensors. Similar to existing sensor attacks, the attack
is domain-specific to maximize success.

• (External) The attack vector proposed in this work is an
external one where a security camera and/or other sensors
unrelated to the AR/VR device but present in the same
room can extract sensitive information from the device
and particularly the interaction between the user and the
device. The important feature of this attack is that the
attacker does not need to infiltrate and/or install any app on
the AR/VR device and the attack is completely external.

Threat Model. We assume an adversary who tries to infer the
keystrokes inserted by a victim interacting with an AR/VR de-
vice. We assume that the device is completely secure, that there
is no malicious application installed, that the firmware/OS is
unmodified, and that the hardware components and sensors
work correctly without bugs. Instead, we assume a completely
external attack model. Specifically, the adversary is capable of
observing the user (victim) while they are interacting with the
AR/VR device. This is achieved, for example, by collecting
video frames from the interaction between the user and the
device using a camera. However, we assume the adversary
has no control over the virtual world and cannot observe any
inputs and/or commands that are purely in the virtual domain.

We envision two possibilities for our attack: (a) the victim

is in a public place (e.g., metro, coffee shop, etc.) and is
interacting with their AR/VR device, hence the adversary can
get close and record the frames using their own device. (b)
The victim is in-door but the adversary is either using a
hidden camera that is pre-installed (e.g., an Airbnb, a hotel
room, etc.), or hacking into an existing security camera, or the
adversary leverages a long-range high-quality lens to record
the frames from a long distance (e.g., a window across the
street). In Section IV, we discuss our setup and how each
assumption impacts our design, attack, and results. We also
discuss the impact of the camera’s angle, distance, and other
obstacles that might protect the user’s hands.

III. LENSHACK: ATTACK STRATEGY

In short, LensHack leverages an external camera, an
Amazon Blink in our implementation, to record the frames
when a victim is interacting (typing) with an AR/VR device
(Meta Quest 2), and a multi-step algorithm to analyze the
frames to infer the keystrokes.

The core of our design is a six-step algorithm which is
depicted in Figure 2. Briefly, LensHack first extract the
3D key points (basic features) from each frame 1 . These
points are then fed into a module for detecting “clicks” to
recognize when a new key is pressed 2 . Simultaneously,
using the 3D key points, various features are extracted to
estimate the approximate location of the keyboard 3 - 4 .
Using the location of the keyboard and hands, our algorithm
then estimates the keystrokes and outputs a word 5 . Further,
using a new technique, LensHack adjusts itself based on the
new observations to improve the overall accuracy 6 . In the
following, we describe each step in more detail.

1) 3D feature extraction using MediaPipe. Video frames are
first fed into a feature extraction block to identify the hand,
body location, and direction. We opt for using MediaPipe
as the feature extractor. Google’s MediaPipe is a popular
machine-learning model for image processing and has been
used for a variety of vision tasks including hand tracking,
object detection, motion tracking, etc. In our setup, MediaPipe
is particularly configured to output two sets of data: (a) hand
index points and (b) body index points.

Precisely, MediaPipe yields 21 2D points (x,y) for every
hand and 33 for the complete body. This outcome is termed
raw features and is represented as Frh, Flh, and Fb for the
right hand, left hand, and whole body, respectively. For a
deeper understanding of MediaPipe’s internal structure and its
functioning, we direct readers to the research conducted by
Lugaresi et al. [23].

2) Click (Keystroke) Detection. The second step for the attack
is detecting when a key is pressed. Given that our framework
continuously analyzes the frames, it is important to find the
key press “event” accurately and timely.

To find the key press, which we call “click” in this paper,
we observe that the distance between the index finger and
thumb can accurately reveal the event. More specifically, if
the distance between the index and thumb is monitored (using

frames

Media
Pipe

Click
Det.

Feature
Ext.

C= {R:[x,y,Y/N], L:[x,y,Y/N]}

V= {v1, v2, …, vn}

Keyboard
Locator

P= {p1, p2, p3,p4} Word
Adjust word

1

2

3

4 5

6

Fig. 2: The main steps for LensHack. Our framework takes a frame, extracts the hand and body locations, detects the keystrokes
(clicks), localizes the keyboard based on the body and hand locations, and extracts the characters for each keystroke.

Time

D
is
ta
nc
e

Left Right

Fig. 3: The distance between the index finger and thumb is
shown for both hands. Local minima indicate a click (key
press) as highlighted by the rectangles.

the relevant indices in Frh and Flh), valleys will indicate a
click. Such observation is further depicted in Figure 3 where
the distance between two fingers for each hand is shown over
time and clicks are highlighted using rectangles.

Care should be taken to detect the valleys (local minima).
As can be seen in Figure 3, the distance signal is fairly
noisy as the user constantly moves their hands/fingers and
hence the distance moves up and down over time. As a
result, simple detection of minima would result in high false
positives. Instead, we observe that the peak’s prominence is a
very robust indicator of the click as only true clicks result in
very prominent spikes in the signal shown in Figure 3. Using
this insight, LensHack first computes the distance between
relative raw features collected from step 1 , and then first
detects local minima and then computes the prominence for
each spike. Using trial and error, we then set a threshold, Pth,
and label a spike as click only if its prominence is larger than
this threshold.

It is important to mention that a click often lasts multiple
frames (depending on the frame rate and type speed). To avoid
false keystroke detection, it is important to properly filter click
events as only one click per keystroke should be detected. As
a result, only one frame out of consecutive T frames should be
analyzed at the later stages of the framework. This is achieved
by using a buffer and outputting only one element of the
buffer while discarding the rest (the discarding is done when
the event is finished – i.e., when no click was detected for
five consecutive frames). We observe that our algorithm is not
sensitive to which frame to use, thus we choose the middle

𝜃

𝑎
𝑏

𝑐

𝑑

Fig. 4: To estimate the location of the keyboard, we first extract
multiple different features (shown as ‘a’-‘d’ and θ) from the
raw features created by MediaPipe.

frame as the representative (although using any other frame
had very similar results based on our initial analysis).

3) (Advanced) Feature Extraction. In parallel with click
detection, our framework analyzes the raw features to extract
more (advanced) features. As we will describe later, these
features will be used to precisely estimate the location of the
keyboard in the space.

For keyboard location estimation, we observe that the loca-
tion is dependent on multiple factors hence the features should
be carefully selected to maximize the accuracy.

In particular, we note that the positioning of the key-
board is inherently linked to the camera’s perspective and
the user’s bodily alignment. Additionally, we ascertain that
the keyboard’s placement is influenced by the user’s physical
attributes, primarily their height, the gap between their arm
and fingers, the separation between their arm and head, and
the midpoint between their body and the ground.

Using these insights, we extract five main features shown in
Figure 4. It is important to mention that we considered other
potential features including the distance between arms and
heads, etc. but did not find a statistically significant correlation
between these other features and the keyboard location.

4) Estimating the Keyboard Location. Using the selected
frame that includes a click (step 2) and the extracted features
from the 3D index points in step 3 , the next major step is to
estimate the location of the keyboard to ultimately infer the
exact keystroke (i.e., which key has been pressed).

We have already discussed in the previous step that the key-

Fig. 5: Steps required to locate the keyboard and inferring
the key. Our framework leverages the features described in
Figure 4 to first locate the keyboard (the estimated location is
shown in light blue). Using the location, known layout, and
the fingers’ location, our algorithm locates the exact key (e.g.,
letter ‘g’ in this example).

board’s location is a function of the user’s physical attributes.
Using the features explained in Figure 4, the “Keyboard
Locator” block, outputs the location of the keyboard in space.
To achieve this, we explored various solutions including a
rule-based method and machine learning-based estimation.
Using various experiments, we ultimately develop a machine
learning-based location estimator.

Specifically, our block takes a frame, the location of fingers
and the (advanced) features derived from step 3 and outputs
a vector of four 2D (x,y) points (V = {v1, v2, v3, v4}). The
points indicate the four corners of the keyboard deciding
its exact location and size. Note that, we assume that the
adversary already knows the victim’s keyboard layout hence
once the location and size are known, the exact location of
each key on the keyboard is calculated by the block.

Internally, our machine learning block to estimate the
location is a fully connected neural network (multi-layer
perceptron or MLP) consisting of three layers (an input and
output layer and a hidden layer). The input layer has the same
size as the number of features, while the output layer has eight
outputs formed into four pairs (for each 2D point representing
a corner of the keyboard). We varied different sizes for the
hidden layer, ultimately finding that a layer with ten neurons
achieves the best result.

Once the location of each individual key is known, the final
and most critical step is to infer the key. This is done by
checking the coordinates of the finger and mapping it into
the predicted location. In Figure 5, we illustrate these steps in
more detail.
5) Adjusting the Keyboard Location. While the location of
the key is determined by this point, we propose an additional
step to increase the accuracy of the attack further.

Specifically, we observe that our keyboard location detection
algorithm on average has up to two ‘hop’ errors on the x-axis
and one ‘hop’ error on the y-axis. For a QWERTY keyboard,
we define hop as the characters that are within one key distance
of the pressed key. For example, for an x-axis hop, a 2-hop
error means that for character ‘g’, the potential outcomes are
{‘d’, ‘f’, ‘g’, ‘h’, ‘j’}. Similarly, for the 1-hop y-axis, the
options are one row above or below (if any) the pressed key.

2

L, E, N

L, E, N, S, - , H, A

…, S, -, H, A, C, K, Ent.

(from keyboard locator)1

2

3

4

Fig. 6: How the Word Adjust block can find the exact spot of
the keyboard after a few keystrokes. The figure shows how the
possible locations of the keyboard change as the word “Lens
Hack” is being typed.

Considering this intrinsic error, two choices emerge. Ini-
tially, there’s the possibility of emphasizing the enhancement
of location estimation. Alternatively, there’s the option of
prioritizing adjusting the location as more keys are observed
by our framework.

During the design of our location estimator (4), we empha-
sized heavily improving the accuracy. However, we observe
that the online adjustment is needed to achieve high accuracy.
As a result, we design a “Word Adjust” block where the goal
is to reduce the detection error by reducing the search space
as more inputs (key press) are observed.

The fundamental concept of how this block operates is
depicted in Figure 6. Overall, recall that our location estimator
has a 2-hop x-axis and 1-hop y-axis error. Nevertheless,
upon pressing a new key, the unauthorized positions become
eliminable, thus reducing the search space. For instance, the
figure illustrates the transformation in the search space while
typing the word “Lens Hack”. The initial trio of characters
occupies distinct rows, resulting in the y-axis search space
narrowing to two alternatives (either as displayed or shifted
up by one row). The downward shift ceases to be viable as it
would misplace the ‘E’ character into an unauthorized location
— that is, beyond the projected rectangle. Furthermore, these
three characters also eliminate one possibility along the x-
axis. Continuing the typing, more possibilities are eliminated
as the user types characters such as ‘Space’, ’A’, and ‘En-
ter’. Evenetually, as the last character is pressed, only one
viable location remains allowing to achieve 100% accuracy in
keystroke detection for this particular example.

There are two important considerations. First, in order to
achieve better accuracy, our algorithm dynamically adjusts the
location of the keyboard (step 6). After each adjustment, the
algorithm also dynamically adjusts its previous predictions.
Collectively, this means that the accuracy can significantly

0

0.2

0.4

0.6

0.8

1
Av

er
ag

e
A

cc
ur

ac
y

Word Length

top-1 top-4 top-10 top-100

(a)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

A
cc

ur
ac

y

Number of Guesses

top-1 top-4 top-10 top-100

(b)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

A
cc

ur
ac

y

Number of Attempts

top-1 top-100 top-1k top-10k

(c)

Fig. 7: Results for LensHack. (a) Accuracy per character. The value of top-n specifies the number of characters (n) entered by
the user. (b) Accuracy per word. Each word is between 6-12 characters. The result shows the accuracy of top-n guesses made
by our framework. (c) Accuracy per word when combined with a sophisticated brute-force strategy. Our algorithm randomly
shifts the keyboard location and adds/removes characters. Top-n represents the number of attempts by the algorithm to guess
the password. Results demonstrate orders of magnitude fewer attempts are needed to achieve high accuracy.

increase for ALL characters and not just for future characters.
The second consideration is that 100% accuracy is not

always achievable. The reason for this is that the victim’s
word(s) may not be long enough to eliminate all the possi-
bilities. We will show how the accuracy changes when the
word size changes in Section IV.

IV. EVALUATIONS

Setup. To show the feasibility of the proposed attack, we
run various experiments using different configurations. To
collect data, we employ a Meta Quest 2 alongside an Amazon
Blink security camera with 30 fps (frame per second). The
camera rests on a tripod positioned on a desk, resulting in
an approximate total setup height of three meters. To record
the samples, we use an Amazon Blink Sync Module and flash
drive. Using the Blink mobile app, we then manually record
the videos. As described in Section II, during a real attack,
the assumption is that the attacker either directly controls the
camera and/or hacks into the cloud account and hence is able
to capture/download the videos.

To input the words, the user stands in front of the camera,
about four meters away from it. To study the impact of
angle, we use three configurations: angle={0, 45, 75}. We
did not investigate the effect of long distances, however, our
preliminary experiment showed that the accuracy does not
change in a room setting (i.e., when the distance is <10m).

For data collection, we have five individuals (all co-authors
of the paper) positioned before the camera, tasked with in-
putting a group of words. These words are chosen from a
Kaggle dataset containing prevalent passwords and their asso-
ciated strengths [24]. For each user, 100 different passwords
are randomly selected. The user then types these words one
by one. Each video is separately recorded and labeled with
appropriate tags (username, configuration, and word). We did
not intentionally speed up and/or slow down the typing process
and each user was instructed to type the words with their
normal typing speed. Our further analysis, however, showed
that the typing speed did not have any impact on the accuracy.
Results. We report the results for the attack scenario in
Figure 7. All results are the average accuracy across five

users, typing 100 different words for different configurations.
We repeat each experiment for three configurations (i.e., three
different camera angles).

We report the results in three different categories. In Fig-
ure 7a, the accuracy of character detection is shown. The
results are presented in four different categories: top-1, top-4,
top-10, and top-100. Recall that as we explained in Step 5
and 6 in Section III, our algorithm adaptively improves its
detection accuracy by observing more frames and intelligently
eliminating the impossible configurations. As a result, we
expect to see improved results as more characters are in. To
capture this, the four different categories are selected where
top-x indicates that ‘x’ keys have been observed so far (note
that the keys are not necessarily different).

As can be seen from Figure 7a, the accuracy significantly
improves as more characters are seen by our framework.
Specifically, the per-character accuracy with no adjustments
is about 35%. However, this number quickly grows as the
number of characters increases to four, ten, and then ultimately
a hundred. At its maximum, we observe more than 80% per-
character accuracy.

To further examine the accuracy of LensHack, we run a
new experiment where the user is typing a password that is
6-12 characters long. We then use our framework to predict
the password and report the accuracy in Figure 7b. Note that
adjusting is only applied while typing each word and not
before or after (i.e., for each word, we reset the configuration
to make each inference independent).

The results in Figure 7b are shown in four categories where
top-x represents the first x predictions made (each answer
is created by taking the predicted location of the keyboard
and then moving it randomly in either the x- or y-axis). The
findings reveal an accuracy increase from 55% to 80% when
permitting the algorithm to make additional guesses.

Finally, we delve deeper into analyzing the effect of em-
ploying a more intricate brute-force algorithm on accuracy. We
note that, aside from inaccuracies stemming from projecting
the keyboard’s position, another notable contributor to inac-
curacy lies in click identification—specifically, instances of

0
0.2
0.4
0.6
0.8
1

Users

(a)

0
0.2
0.4
0.6
0.8
1

Angle
0 45 75

(b)

Fig. 8: Sensitivity analysis for LensHack under various
settings. (a) Accuracy per word with brute-force for five
different users. (b) Accuracy per word with brute-force when
the camera is at an angle in relation to the user.

overestimating and underestimating clicks (where the assump-
tion might be that the password has a length of n characters
when it is actually n ± r). Consequently, our advanced brute-
force approach not only systematically explores various x-
and y-axis shifts of the keyboard, but also introduces random
additions or removals of characters from the password at
various locations of the password. The outcomes are depicted
in Figure 7c. Analogous to the preceding figure, distinct
setups indicate varying attempt counts. The findings illustrate
that employing a more advanced brute-force attack can yield
accuracy levels approaching 90%.

To explore the influence of diverse measurement setup
factors on accuracy, we depict the outcomes in Figure 8, show-
casing the variations in camera angle and per-user accuracy
reporting. The results for both diagrams correspond to the
brute-force test (refer to Figure 7c). Accuracy experiences only
marginal alteration in both scenarios. The fluctuation among
users in Figure 8a is approximately ± 3%, signifying the
algorithm’s limited sensitivity to user behavior and/or phys-
ical traits. We observe that the location accuracy is slightly
impacted by the person’s physical attributes, however, that
impact is pretty low.

For different angles shown in Figure 8b, the differences are
slightly higher. As the camera is more angled, the accuracy
drops. However, we observe that this drop is less than 5%
at most. We also contrast the outcomes with the camera
positioned on the left and right sides of the user, yet discern
no notable distinction.

V. RELATED WORK

Software Attacks. The most common type of attack on
AR/VR devices is a software attack [9], [25], [17], [18], [19],
[26], [20]. In this category, the adversary manages to install a
malicious app on the AR/VR device and then leverages this
application to perform a malicious action.

Specifically, several works focused on extracting keys by
running a background malicious application [9]. For example,
Zhang et al. [9] proposed a new attack model to extract
keystrokes by using various available side-channel information
including the frame rate and memory. A common defense
relies on enforcing standard techniques for isolation and
information flow [27], [28], [29], [30], [31], [32].

Hardware/Sensor Attack. The other possible class of at-
tacks on AR/VR devices are sensor and/or hardware-based
attacks [21], [11], [12], [13], [22], [5]. In this class, the goal
is to attack the sensors to create various malicious behaviors
and/or exploit them to extract sensitive information either from
the device itself or even from the surrounding environment.
Also related are methods that exploit the VR device network
traffic to extract information [33], [34].

Close to this work is the method proposed by Ling et
al. [11], where the user’s head motions were monitored to
extract the keystrokes. Further, the authors presented a model
to extract the keystrokes when the user is using a gear to
insert the keys. Also close to this work is an attack method
proposed by Meteriz et al. [10] where the key taps were
detected externally by exploiting a motion sensor connected
to the AR/VR device. In contrast to these studies, our attack
model addresses a more challenging context by exclusively
utilizing raw video frames for hand movement extraction,
without resorting to lasers, motion sensors, or specialized gear-
generated signals. Moreover, our approach is more accurate
with only a limited observation of characters, in contrast to
prior approaches that necessitate a larger sample size for
comparable precision.

Similarly, Luo et al. [12], Slocum et al. [7], and Wu et
al. [8] proposed new methods to exploit motion sensors to
infer keys. Compared to these methods, LensHack relies on a
stronger threat model where no malicious application needs to
be installed on the device and the attack is completely external
and independent of the device.

While preparing the final version of this work, the authors
became aware of a very recent work that achieved similar
capabilities to LensHack. This complementary exploration
proposed by Gopal et al. [15] delves into comparable avenues
to ours and addresses similar concerns regarding the security
and privacy implications of AR/VR devices in the context
of user interactions and an external adversary. By adopting
an analogous perspective, the manuscript investigates a novel
attack vector and its potential impact on user data confiden-
tiality. While both works address a similar problem, there
are several important differences between our approaches.
First, our approach is independently developed and utilizes
a completely different strategy for finding the location of the
keyboard. As explained in Section III, we extract advanced
features from the 3D key points and leverage a machine-
learning model to estimate the keyboard’s location. Gopal et
al., conversely, relies on prior information about the camera
location to estimate the keyboard and further relies on observ-
ing many characters to find the exact location. As we showed
in this paper, by only observing 5-10 characters, our method
can achieve up to 80% accuracy.

VI. CONCLUSIONS

In this paper, we presented a new attack strategy for
inferring keystrokes on AR/VR devices. The key insight was
to leverage an external observer to extract the information
about the user’s interaction. We showed that by analyzing the

recorded videos collected by a camera, one can successfully
extract the keys pressed by the user in the virtual domain.

Given the increasing prominence of AR/VR devices, there
is a pressing need to conduct comprehensive and thorough
examinations of the potential risks and hazards associated with
the usage of such devices.

REFERENCES

[1] T. Zhang, C. Shi, P. Walker, Z. Ye, Y. Wang, N. Saxena, and Y. Chen,
“Passive vital sign monitoring via facial vibrations leveraging ar/vr
headsets,” in Proceedings of the 21st Annual International Conference
on Mobile Systems, Applications and Services, 2023, pp. 96–109.

[2] L. He, H. Hou, S. Shi, X. Shuai, and Z. Yan, “Towards bone-
conducted vibration speech enhancement on head-mounted wearables,”
in Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services, 2023, pp. 14–27.

[3] V. Nair, G. M. Garrido, and D. Song, “Exploring the unprecedented
privacy risks of the metaverse,” arXiv preprint arXiv:2207.13176, 2022.

[4] S. Wang, S. Yang, H. Li, X. Zhang, C. Zhou, C. Xu, F. Qian, N. Wang,
and Z. Xu, “Salientvr: saliency-driven mobile 360-degree video stream-
ing with gaze information,” in Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, 2022,
pp. 542–555.

[5] C. Shi, X. Xu, T. Zhang, P. Walker, Y. Wu, J. Liu, N. Saxena, Y. Chen,
and J. Yu, “Face-mic: inferring live speech and speaker identity via
subtle facial dynamics captured by ar/vr motion sensors,” in Proceedings
of the 27th Annual International Conference on Mobile Computing and
Networking, 2021, pp. 478–490.

[6] S. Eom, M. Hadziahmetovic, M. Pajic, and M. Gorlatova, “Through an
ar lens: Augmented reality magnification through feature detection and
matching,” in Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems, 2022, pp. 784–785.

[7] C. Slocum, Y. Zhang, N. Abu-Ghazaleh, and J. Chen, “Going through
the motions:{AR/VR} keylogging from user head motions,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 159–
174.

[8] Y. Wu, C. Shi, T. Zhang, P. Walker, J. Liu, N. Saxena, and Y. Chen,
“Privacy leakage via unrestricted motion-position sensors in the age of
virtual reality: A study of snooping typed input on virtual keyboards,” in
2023 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2023, pp. 3382–3398.

[9] Y. Zhang, C. Slocum, J. Chen, and N. Abu-Ghazaleh, “It’s all in your
head (set): Side-channel attacks on ar/vr systems,” in USENIX Security,
2023.

[10] Ü. Meteriz-Yıldıran, N. F. Yıldıran, A. Awad, and D. Mohaisen, “A
keylogging inference attack on air-tapping keyboards in virtual envi-
ronments,” in 2022 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). IEEE, 2022, pp. 765–774.

[11] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu, “I know what you
enter on gear vr,” in 2019 IEEE Conference on Communications and
Network Security (CNS). IEEE, 2019, pp. 241–249.

[12] S. Luo, X. Hu, and Z. Yan, “Holologger: Keystroke inference on mixed
reality head mounted displays,” in 2022 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR). IEEE, 2022, pp. 445–454.

[13] M. Corbett, B. David-John, J. Shang, Y. C. Hu, and B. Ji, “Bystandar:
Protecting bystander visual data in augmented reality systems,” in
Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services, 2023, pp. 370–382.

[14] Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “Eyetell: Video-
assisted touchscreen keystroke inference from eye movements,” in 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp. 144–
160.

[15] S. R. K. Gopal, D. Shukla, J. D. Wheelock, and N. Saxena, “Hidden
reality: Caution, your hand gesture inputs in the immersive virtual world
are visible to all!” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 859–876.

[16] S. Luo, A. Nguyen, H. Farooq, K. Sun, and Z. Yan, “Eavesdropping on
controller acoustic emanation for keystroke inference attack in virtual
reality,” in The Network and Distributed System Security Symposium
(NDSS), 2024.

[17] K. Ruth, T. Kohno, and F. Roesner, “Secure {Multi-User} content
sharing for augmented reality applications,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 141–158.

[18] J. Shang, S. Chen, J. Wu, and S. Yin, “Arspy: Breaking location-based
multi-player augmented reality application for user location tracking,”
IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 433–447,
2020.

[19] L. S. Figueiredo, B. Livshits, D. Molnar, and M. Veanes, “Prepose:
Privacy, security, and reliability for gesture-based programming,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 122–
137.

[20] H. Farrukh, R. Mohamed, A. Nare, A. Bianchi, and Z. B. Celik,
“{LocIn}: Inferring semantic location from spatial maps in mixed
reality,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 877–894.

[21] J. R. Sanchez Vicarte, B. Schreiber, R. Paccagnella, and C. W.
Fletcher, “Game of threads: Enabling asynchronous poisoning at-
tacks,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 35–52.

[22] J. O’Hagan, P. Saeghe, J. Gugenheimer, D. Medeiros, K. Marky,
M. Khamis, and M. McGill, “Privacy-enhancing technology and ev-
eryday augmented reality: Understanding bystanders’ varying needs for
awareness and consent,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 6, no. 4, pp. 1–35, 2023.

[23] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja,
M. Hays, F. Zhang, C.-L. Chang, M. G. Yong, J. Lee et al., “Medi-
apipe: A framework for building perception pipelines,” arXiv preprint
arXiv:1906.08172, 2019.

[24] B. BANSAL. (2023) Password strength classifier dataset. [On-
line]. Available: https://www.kaggle.com/datasets/bhavikbb/password-
strength-classifier-dataset?resource=download

[25] T. Kohno, J. Kollin, D. Molnar, and F. Roesner, “Display leakage
and transparent wearable displays: Investigation of risk, root causes,
and defenses,” Microsoft Research, Tech. Rep., February 2015.[Online].
Available https . . . , Tech. Rep.

[26] J. Hu, A. Iosifescu, and R. LiKamWa, “Lenscap: split-process frame-
work for fine-grained visual privacy control for augmented reality apps,”
in Proceedings of the 19th annual international conference on mobile
systems, applications, and services, 2021, pp. 14–27.

[27] Y. Kim, S. Goutam, A. Rahmati, and A. Kaufman, “Erebus: Access
control for augmented reality systems,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 929–946.

[28] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang, “World-
driven access control for continuous sensing,” in Proceedings of the 2014
ACM SIGSAC conference on computer and communications security,
2014, pp. 1169–1181.

[29] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner, “Towards security and
privacy for multi-user augmented reality: Foundations with end users,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 392–408.

[30] R. Herbster, S. DellaTorre, P. Druschel, and B. Bhattacharjee, “Privacy
capsules: Preventing information leaks by mobile apps,” in Proceedings
of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, 2016, pp. 399–411.

[31] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and J.-
P. Hubaux, “Smarper: Context-aware and automatic runtime-permissions
for mobile devices,” in 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 1058–1076.

[32] N. Raval, A. Razeen, A. Machanavajjhala, L. P. Cox, and A. Warfield,
“Permissions plugins as android apps,” in Proceedings of the 17th
Annual International Conference on Mobile Systems, Applications, and
Services, 2019, pp. 180–192.

[33] R. Trimananda, H. Le, H. Cui, J. T. Ho, A. Shuba, and A. Markopoulou,
“{OVRseen}: Auditing network traffic and privacy policies in oculus
{VR},” in 31st USENIX security symposium (USENIX security 22),
2022, pp. 3789–3806.

[34] A. Al Arafat, Z. Guo, and A. Awad, “Vr-spy: A side-channel attack on
virtual key-logging in vr headsets,” in 2021 IEEE Virtual Reality and
3D User Interfaces (VR). IEEE, 2021, pp. 564–572.

