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Abstract—Modern smart buildings and environments rely on
sensory infrastructure to capture and process information about
their inhabitants. However, it remains challenging to ensure that
this infrastructure complies with privacy norms, preferences, and
regulations; individuals occupying smart environments are often
occupied with their tasks, lack awareness of the surrounding
sensing mechanisms, and are non-technical experts. This problem
is only exacerbated by the increasing number of sensors being
deployed in these environments, as well as services seeking
to use their sensory data. As a result, individuals face an
unmanageable number of privacy decisions, preventing them
from effectively behaving as their own ”privacy firewall” for
filtering and managing the multitude of personal information
flows. These decisions often require qualitative reasoning over
privacy regulations, understanding privacy-sensitive contexts,
and applying various privacy transformations when necessary.
We propose the use of Large Language Models (LLMs), which
have demonstrated qualitative reasoning over social/legal norms,
sensory data, and program synthesis, all of which are necessary
for privacy firewalls. We present PrivacyOracle, a prototype
system for configuring privacy firewalls on behalf of users using
LLMs, enabling automated privacy decisions in smart built
environments. Our evaluation shows that PrivacyOracle achieves
up to 98% accuracy in identifying privacy-sensitive states from
sensor data, and demonstrates 75% accuracy in measuring social
acceptability of information flows.

Index Terms—Large Language Models, Privacy, Contextual
Integrity, Smart Environments

I. INTRODUCTION

Our physical spaces are progressively outfitted with a grow-
ing number of devices, with modern smart-built environments
collecting and performing inferences over an increasingly
rich and diverse set of sensory data. However, the sensing
infrastructure faces novel privacy risks as interactions between
devices and owners evolve. The amount of personal data
captured in smart environments only continues to grow as
the number and types of deployed devices increase over time.
This is further exacerbated by advances in machine learning
algorithms which have introduced a rapidly growing list of
invasive inferences from a variety of sensor modalities. At the
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same time, individuals continue to visit new smart environ-
ments where control and awareness of sensory infrastructure
range from complete ownership to non-existent. The result
is a largely unregulated sensing environment where privacy
decisions become unmanageable due to the scale of devices
and novel yet invasive inferences over personal sensory data.

While there have been several types of systems proposed
to alleviate the burden of privacy decisions and regulate
the processing of sensory data, they often fall short of the
requirements for modern smart environments. Approaches that
learn and apply user privacy preferences require bespoke
machine learning models based on a curated dataset of pri-
vacy perceptions which become outdated over time, limiting
their effectiveness as users encounter new types of smart
environments with unique applications and devices. Mech-
anisms for simplifying consent mechanisms may ameliorate
the complexities of understanding privacy risks, but they do
not mitigate user effort, thus making them ineffective in
environments where awareness of sensory infrastructure is
limited, and non-scalable when the set of applications and
devices increase. Lastly, approaches to building trusted sources
of access control and processing of sensory data still depend
on user specification of privacy rules, falling short of the
automated and informed privacy decision-making required of
smart environments. Thus, it is necessary to have a mechanism
acting as a firewall for the automatic filtering and management
of personal sensory data, which we describe as privacy fire-
walls. These firewalls mediate the flow of information between
sensing infrastructure and service providers, who may use
personal data captured from data subjects to provide various
services. This is shown in Figure 1.

Effective privacy firewalls in modern smart environments
require several properties. First, they must be capable of
qualitative reasoning about data-sharing decisions that involve
utility, societal values, social pressures, as well as cultural and
legal rules. This is especially important in the case of regula-
tions, as they are costly to enforce. For example, the California
Consumer Privacy Act (CCPA) is estimated to cost roughly 78
billion USD annually total imposed cost on businesses seeking
to comply [1]. Second, they must be able to infer different



Fig. 1. High-level overview of privacy firewalls, where expert knowledge in
the form of LLMs can be used to configure sharing of sensory data.

states of users in the environment from low-level sensor data,
and whether those states present privacy risks. For example,
a user who is lying down at a particular place and time may
refer to a private event of sleeping. With an understanding of
the context surrounding sensory information, privacy firewalls
can effectively operate independently of users. Third, a privacy
firewall should be able to quickly adapt to different tools for
preserving privacy. While many ML algorithms are uncovering
privacy risks in data, a variety of techniques are emerging
that can be utilized to preserve privacy, particularly under the
umbrella of generative AI [2], [3], enabling various tools to be
employed for privacy-sensitive data under different conditions.

Recently, Large Language Models such as ChatGPT [4]
have demonstrated tremendous capability in breaking down
high-level tasks into several technical steps [5], as well as
being able to summarize and provide question answering, such
as for privacy policies [6]. In addition, LLMs have passed
rigorous exams in law [7] and medicine [8], suggesting they
possess deep knowledge of legal, social, and ethical norms.
However, it has yet to be studied how much latent knowledge
about privacy norms is captured within LLMs, and how they
can be applied in configuring privacy firewalls.

We hypothesize that LLMs can be harnessed to accomplish
the tasks necessary for effective privacy firewalls in smart
environments. In particular, they are capable of automated
privacy decision-making and processing, a task that would
normally involve significant user involvement or ML models
trained on privacy preferences. Neither are appropriate for
modern smart environments given the scale of devices present
and the necessary adaptation to new regulations and norms.
Importantly, LLMs are capable of qualitative reasoning over
data processing decisions due to possessing the significant
degree of world knowledge required in making these decisions.

The main contribution of this work, PrivacyOracle 1, is
an LLM-based system for managing and configuring privacy
firewalls in smart environments. We investigate the perfor-
mance of the privacy firewall on several tasks, as shown in
Figure 1: validation of informational flows under particular

1https://github.com/nesl/PrivacyOracle

legal rules and social norms, inference of privacy-sensitive
states from low-level sensor data from the environment, and
lastly selection of relevant data transformations under different
privacy and utility requirements.

II. RELATED WORK

In this section, we cover various existing ideas for automat-
ing privacy decisions and managing flows of data.

A. Automating Privacy Decisions

The idea of privacy firewalls and controlling flows of
sensory data has also been suggested in the past. Early work
on privacy-aware data streaming involved personal data stores,
providing a trusted source of storage and access control
operating over user-specified policies [9], [10], with similar
ideas proposed today in the form of hub-based data flow
control [11]–[13]. However, these approaches still require a
significant level of user effort (such as for specifying policies),
cannot qualitatively reason about regulations and norms, and
are unable to selectively choose different privacy tools based
on current privacy and utility requirements.

Other works aim to help manage the burden of privacy
decisions in smart environments. Although the concept of
privacy assistants is over a decade old [14], systems have been
developed specifically for both mobile and IoT settings [15]–
[17] which involve studying user preferences and training ML
models to predict privacy preferences of new users. As a result,
it allows automatic configuration of these settings given new
application environments without user involvement. However,
these systems typically lack knowledge of social norms and
legal regulations for privacy, and can not easily integrate new
knowledge of sensor risks.

There has been some prior work that seeks to encode legal
rules and smart home privacy preferences into the format
of contextual integrity [18]–[20], which allows automated
reasoning over informational flows. However, these works
cannot validate the appropriateness of new informational flows
that may arise with adding new sensors and services in an en-
vironment. More specifically, these systems cannot generalize
to new scenarios and reason about their privacy behaviors.

B. Reducing Effort in Privacy Decisions

Several approaches aim to create more intuitive represen-
tations of sensing information in an environment, effectively
reducing the user effort in making privacy decisions in how
their data is used and shared [6], [21]. At the same time,
several works employ language models to assist in parsing and
understanding privacy policy documents, such as [22], [23].
Both of these approaches aim to create more usable privacy
systems. However, these works do not address the more fun-
damental challenge of automatically identifying and handling
privacy violations using various tools without involving the
user.



Fig. 2. Architecture of PrivacyOracle, our privacy firewall for regulating the flow of sensory data in smart-built environments via several LLM tasks.

C. Configuring Systems using LLMs

Although LLMs haven’t been deeply investigated in ap-
plying privacy controls over sensory data, the general idea
of applying LLMs to configure systems and manage data
has been explored before. Several works aim to apply LLMs
in configuring routers [24], [25], configuration tuning for
distributed systems [26], and detecting vulnerabilities in soft-
ware [27], [28]. Other LLM-based systems have also been
created that are capable of operating over sensor data and
environmental events [29]–[31].

III. SYSTEM DESIGN

The main objective of this work is to configure a privacy
firewall, which regulates informational flows between sensing
infrastructure and smart environments. However, to limit the
scope of this work, we consider smart environments which
consist of a sensing infrastructure that is willing to cooperate
with data subjects’ privacy preferences. In addition, we assume
that data subjects share a similar set of privacy requirements,
and do not consider conflicting preferences. In this work, we
consider examples like smart homes, where the primary data
subject is a homeowner who wishes to control information
flowing from a personally managed set of devices. However, in
section V we discuss other settings as well, including conflicts
in privacy requirements and adversarial scenarios.

A privacy firewall may be co-located on the same premises
as the sensing infrastructure (such as a trusted hub [12], [13])
or may exist as a separate storage/compute platform on an
external network (such as personal data vaults [9] or databoxes
[10]). As shown in Figure 1, the sensing infrastructure captures
the personal information of data subjects who enter a smart-
built environment (possibly with or without their consent). The
privacy firewall then acts as a filter between information sent
between the sensing infrastructure and some 3rd party service
providers to ensure the privacy of data subjects.

In this work, we investigate the necessary services for
privacy firewalls in protecting sensory data. These services
are shown in Figure 2 as informational flow verification,
sensitive state detection, and tool selection. Each service is
powered by LLMs, which perform reasoning over unstructured

privacy requirements, as well as qualitative reasoning over
latent knowledge of privacy norms and regulations. We will
now describe each service and how it interacts with the flow
of information, shown in Figure 2.

A. Informational flow verification

The first service is to verify information flow requests from
a service provider to a sensing infrastructure. This service must
identify the necessary knowledge to configure the privacy rules
for sharing these informational flows.

We use the same definition of informational flows as de-
scribed in Contextual Integrity (CI) [32]. Contextual Integrity
is a theory of privacy based on recognizing and evaluating
appropriate flows of personal information in the absence of
effective consent mechanisms. Privacy is achieved when a flow
of personal information is deemed appropriate by entrenched
social and legal norms - in our experiments, we evaluate
appropriateness as compliance with privacy regulations (i.e.
HIPAA) and social norms. Under CI, a personal informational
flow is described by five parameters: data subject (who the
data is about), the sender (the entity that transmits the data),
the recipient (the entity that receives the data), information
type (describes the category of the information), and lastly,
the transmission principle (applies constraints under which the
information flows). Thus, a personal information flow can be
described with a tuple of 5 elements: (data subject, sender,
recipient, attributes, and transmission principles).

As shown in Figure 2, an informational flow is proposed by
a service provider, and evaluated by the LLM. The evaluation
should consider both privacy regulations (such as HIPAA) and
norms of society. An example of this reasoning is shown
on the right side of Figure 2, under ”Informational Flow
Verification”. This task involves specifying the informational
flow parameters under a particular legal or social context
and asking the LLM to decide if the flow is acceptable.
PrivacyOracle may then use the response generated by the
LLM to decide if an information flow is acceptable or not,
and share information accordingly.



B. Sensitive State Detection

The second service in a privacy firewall is to identify
sensitive segments of sensor data that should be hidden based
on privacy preferences. This service requires sensor data to be
augmented with metadata information (such as sensor type,
location, and names), that grants additional context for iden-
tifying the sensitivity of data. This task filters out sensor data
based on a privacy preference expressed in natural language.

An example of this filtering process is shown on the right
side of Figure 2, shown under ”Sensitive State Detection”.
We provide a preference (such as hiding sensor data relating
to hygiene activities) and give the LLM a sequence of sensor
data augmented with certain metadata to assist in identifying
privacy-sensitive segments. The response from the LLM may
then be used to filter out sensor data flowing to the service
provider based on the time intervals obtained from the LLM.

C. Tool Selection

The last service of a privacy firewall is to identify the
appropriate tools for transforming sensor data into a format
that is acceptable from a privacy perspective. This allows
privacy firewalls to not only accept or reject informational
flows but modify them such that they are acceptable. Tool
selection involves reasoning over both the privacy preferences
of users and a library of tools, which allows automated
selection of a particular tool given different scenarios. Fur-
thermore, this service not only selects tools but can generate
dataflow pipelines using other preprocessing tools as well,
which improves the interoperability of different tools without
having to worry about modifying the tool interfaces.

Figure 2 describes an example of this pipeline generation
process, where a set of available tools and their high-level
descriptions are given to an LLM, in addition to a privacy
preference. The LLM must then perform qualitative reasoning
over each different tool (which may offer various privacy-
utility tradeoffs), and identify the correct tool and pipeline
in which to execute that tool. PrivacyOracle then parses the
LLM output, generates the pipeline, and executes it on sensor
data to obtain different privacy and utility metrics.

IV. EVALUATION

This section describes experiments using LLMs in accom-
plishing various tasks for privacy firewalls. In our experiments,
we use GPT-3.5 and GPT-4.0 as our LLM 2.

Validating information flows with privacy regulations

Setup. We choose HIPAA as a case study for evaluating
how well LLMs can validate a hypothesized informational
flow against its latent knowledge of privacy regulations. We
manually create 16 different flows of information using the 5
parameters of CI. 8 of the 16 flows are legally acceptable
under the HIPAA Privacy Rule ( manually verified by the
authors), while the other 8 are not. Similarly, 8 of the 16

2Some tasks can be performed adequately using GPT-3.5, while others
required the more capable GPT-4.0. However, the cost of each differs in an
order of magnitude, requiring judicious use of both.

flows involve a data subject which is a 1st party, while the
other 8 involve a data subject which is a 3rd party. The
goal of this experiment is to identify the LLM’s capability
in distinguishing the necessary characteristics for a flow to be
acceptable under a 1st party vs. a 3rd party data subject. More
specifically, a flow is valid depending on the entity providing
consent, and we seek to establish if an informational flow is
valid depending on the data subject (1st vs. 3rd party) and
which entity has provided consent to the informational flow.
This requires an LLM to understand which party consent must
be obtained from under HIPAA. We use GPT-3.5 as our LLM.

Results. LLMs appear to have decent success at identifying
which entities are critical for providing consent in 1st and 3rd
party data subjects, with a low false positive rate of 6.25%
and a false negative rate of 6.25%.

Measuring Social Acceptability of Informational Flows

In addition to measuring how LLMs can validate informa-
tional flows against privacy regulations, we also evaluate how
well they can reason over privacy norms.

Setup. We obtain 144 different information flows generated
from a subset of CI parameters described in [19]. In addition
to the 4 options for data recipients and transmission principles
shown in Figure 3, we provide 3 options for the sender parame-
ter (sleep monitor, fitness tracker, and door lock), and 3 options
for the data type (location, audio, and exercise routine). The
data subject is, by default, the owner of the device. We then
query the LLM to obtain acceptability scores between -1.5 and
1.5, which aims to measure how acceptable an informational
flow is given the varying parameters, with -1.5 being the least
acceptable and 1.5 being the most acceptable. The goal of
this experiment is to study how much the acceptability scores
obtained from an LLM reflect the acceptability scores from
previous user studies on the same informational flows. We
use GPT-3.5 in this experiment.

Results. Our results are shown in Figure 3, which aims to
measure the difference in acceptability scores obtained from
the LLM and a previous user study on the same informational
flows [19]. We average the acceptability scores obtained from
the LLM for each flow which shares the same data recipient
and transmission principle, resulting in a matrix of 16 differ-
ent flows. We then measure the absolute difference between
the acceptability score from the user study and the average
acceptability obtained from the LLM. We assign a sign to the
resulting value based on whether the scores match in terms
of their sign. For example, if the score of the user study
is acceptable (ranges from 0 to 1.5) and the score obtained
from the LLM is unacceptable (ranges from -1.5 to 0), then
the assigned sign is negative. While the differences between
the LLM and user acceptability scores are quite significant,
the majority of informational flows match in terms of binary
acceptability (roughly 75%), demonstrating some agreement
between the social norms of privacy expressed by users and
knowledge of social norms by the LLM.



Fig. 3. Difference in acceptability scores of information flows with given
recipient/transmission principle pairs, measured between LLM and a previous
user study [19].

Identifying Privacy-Sensitive States from Sensor Data

To help privacy firewalls reason about the sensitivity of
sensor data and whether they leak private information, we
believe LLMs can provide sufficient background knowledge
about sensors and their context to identify potentially sensitive
segments of sensor data.

Setup. We use a dataset capturing 35 days of activities
of daily living (ADLs) [33]. Each day contains data from
IoT sensors and their corresponding ADL label. We augment
each sensor data sample with information about what sensors
are being activated (e.g. microwave activated), the time of
activation, as well as the type of sensor (e.g. magnetic). We
split this augmented sensor data into segments of 24 hours. We
evaluate the performance of LLMs for identifying specified
privacy-sensitive states from these segments of data. Table I
describes 3 privacy sensitive states, which we ask the LLM to
identify from the given segments of sensor data. For example,
we asked the LLM to identify time intervals where sensor data
revealed information about hygienic activities. The evaluation
was performed using GPT-4 with a fixed seed and temperature
of 0. The ground truth was obtained from the labeled activities
of daily living, with each privacy-sensitive state associated
with several categories of activities. For hygienic activities,
we associated them with labels of ”Toileting”, ”Grooming”,
and ”Showering”. For a sedentary lifestyle, we associated it
with the labels ”Spare Time/TV” and ”Sleeping”. Lastly, for
house occupancy, we associated it with the label ”Leaving”.

Results. We measure the mean average error (MAE),
intersection-over-union (IoU), and F1 score in the time in-
tervals predicted by the LLM as privacy-sensitive and the
ground truth associated labels. We find that the poor MAE
performance is mainly due to outliers where large time gaps
may occur between one privacy-sensitive state and another. A
missed state would result in a significant time difference until
the next associated state. However, the IoU and F1 scores
demonstrate that there is significant overlap and agreement on
what the LLM identifies as relevant privacy-sensitive states.

Privacy-Sensitive State MAE (seconds) IoU F1
Hygenic Activities 307.04 0.684 0.831
Sedentary Lifestyle 865.31 0.844 0.983
House Occupancy 294.84 0.961 0.701

TABLE I
DETECTION ACCURACY OF GPT-4 FOR PRIVACY-SENSITIVE STATES FROM

SENSOR DATA.

Fig. 4. Response examples of GPT-4 for adapting privacy tools to natural
language requirements

Automatic Adaptation of Privacy Tools to Natural Language
Requirements

While our previous experiments demonstrate that LLMs are
capable of verifying whether an informational flow violates
privacy. In this experiment, we take this idea a step further to
identify what kind of transformations we may apply to a flow
of sensory data to ensure privacy.

Setup. We perform a set of experiments on the Chokepoint
person identification dataset [34]. This dataset consists of
multiple video sequences recording subjects from 2 different
doorway cameras. We also use a set of different privacy
requirements over a stream of images, shown in Table II.

• Requirement A: ”Users in the images wish to hide any
trace of them being part of the video.”

• Requirement B: ”Users in the images wish to hide their
facial appearance, but are fine with the images revealing
other information, such as the color of their shirt.”

• Requirement C: ”Users in the images wish to hide their
facial appearance, and they would like to enable emotion
classification services on their facial data.”

We use GPT-4 to generate a simple dataflow program that
uses a library of different privacy tools while adhering to
the set of natural language privacy requirements. In addition
to some data loading and preprocessing functions, we use 3
privacy tools: A Blur faces tool applies a Gaussian blur over a
detected face. A Block images masks the entire image when a
face is detected. Lastly, a FaceFusion tool [2] performs high-
fidelity face-swapping, where faces in a sequence of images
can be replaced by a source face image while also retaining
features such as environmental lighting and expressions. The
resulting programs for each requirement is as follows:

• Requirement A: [’detect face’, ’block image’, ’save image
to directory’]



Requirement Age F1 Gender F1 Race F1 Emotion F1
A 0.208 0.373 0.151 0.081
B 0.0 0.0 0.0 0.0
C 0.187 0.371 0.288 0.407

TABLE II
PRIVACY (AGE, GENDER, RACE) AND UTILITY SCORES (EMOTION) OF

PIPELINES GENERATED BY DIFFERENT PRIVACY REQUIREMENTS.

• Requirement B: [’detect face’, ’blur face’, ’save image to
directory’]

• Requirement C: [’detect face’, ’convert images to video’,
’facefusion’, ’convert video to images’, ’save image to
directory’]

Note that the facefusion tool also operates over video. To
test alternative pipelines we consider other processing tools
(such as for converting images to video). We then execute
these dataflow programs and evaluate the privacy and utility
characteristics of the transformed data. We measure the age,
gender, race (private) and emotion (utility) of different users
via facial analysis provided by DeepFace [35].

Results. We executed the pipelines generated by the LLM,
and measure the privacy properties of the resulting transformed
images (age, gender, and race), as well as certain utility
requirements that may be desirable from the user’s perspective
(emotion). Table II shows the F1 scores of various facial
characteristics. Depending on the requirement and executed
program from GPT-4, each tool creates different privacy-utility
tradeoffs. The Block images tool provides a high degree of
privacy (no information about age, gender, or race can be
inferred), but incurs a cost when it comes to utility (emotion
recognition). The Blur faces tool also yields decent privacy
performance while possibly maintaining other types of utility
information (e.g. occupancy detection). Lastly, the FaceFusion
tool also yields good privacy performance but is also somewhat
effective for the utility requirement (emotion detection).

V. DISCUSSION

A. Improving LLM outcomes

One of the main challenges in these experiments was obtain-
ing good, yet reasonably consistent results. In the context of
validating informational flows, we found that LLMs provided
more consistent results when names were assigned to subjects
and recipients, rather than defining them by their roles - in
our experiments it appears that LLMs tend to conflate multiple
roles with the same person unless explicitly specified. Another
important discovery was requiring the LLM’s response to be
structured in a particular set of steps before providing an
answer, such as identifying the data subject before generating
the answer. This is similar to the idea of zero-shot chain of
thought prompting, proposed in [36], which requests the LLM
to ’think step by step’.

B. Generalization to other smart environments

Some of the assumptions made in this work may not be
realistic or generalizable to all smart environments. We assume
a cooperative sensing infrastructure operating a privacy fire-
wall. However, not all smart-built environments will cooperate

with their data subjects’ privacy requirements. In addition, we
have not considered cases of conflicting privacy requirements
between data subjects. We leave these avenues of research for
future work.

C. Relation to network security

The concept of a privacy firewall shares many characteristics
with network firewalls and intrusion detection systems. Our
task of validating incoming flows of information against pri-
vacy regulations and social norms is similar to standard packet
filtering firewalls [37] for restricting the flow of network data
based on certain policies. The task of identifying different
privacy-sensitive patterns is akin to signature-based intrusion
detection systems found in next-gen firewalls [38], [39]. Lastly,
the task of adapting new privacy tools to process data is similar
to the concept of ’active response’ mechanisms [40] used as
part of the deep packet inspection intrusion prevention systems
[41]. Unlike network security mechanisms, a privacy firewall
must be able to perform significant qualitative reasoning with
effective use of world knowledge about privacy.

D. Ethical and social implications

Lastly, it is worth considering some of the ethical and
societal implications of automated privacy regulation. Privacy,
particularly in public spaces, has a tradeoff with security and
safety, where efforts to manage crime and emergencies may
be hindered when data is restricted. Managing this tradeoff
is essential for future work. Automated regulation itself is a
costly endeavor and may create biases due to socioeconomic
disparities. Finally, much technological innovation comes from
access to sensory data and it may be challenging to do research
under automated privacy regulations.

VI. CONCLUSION

In this work we propose the idea of using LLMs to manage
sensory information flows in smart built environments, thus
acting as a privacy firewall. We study the performance of
LLMs on three services necessary for privacy firewalls: valida-
tion of sensory informational flows against privacy regulations
and norms, detection of privacy-sensitive states from low level
sensory data, and selection of appropriate data transforma-
tion pipelines to preserve privacy. Our initial experiments
demonstrate the potential of LLM-based privacy reasoning,
and suggests that a world where informational flows are
automatically configured for privacy regulations, norms and
preferences may be closer than anticipated.
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