
Covert Timing Channel Attack on OPC UA-based
Industrial Control Systems
Erkin Kirdan
Framatome

erkin.kirdan@framatome.com

Karl Waedt
Framatome

karl.waedt@framatome.com

Abstract—As industrial control systems (ICS) become in-
creasingly complex and intertwined with information technology
networks, they inadvertently create new vulnerabilities for cyber
threats. Among these threats, covert timing channel attacks,
typically associated with advanced persistent threats, pose a
unique challenge. This paper delves into the implications of
such attacks in an OPC UA setting, a widely adopted standard
for Ethernet-based ICS communication. We explore a range of
potential covert timing channel attacks within OPC UA and
provide a theoretical framework. The practical contribution
of our research involves implementing and demonstrating a
sample attack exploiting the monitored item feature of OPC
UA. In this scenario, changes in a specific variable carry a
secret message transmitted through notification messages. The
client can subsequently decode this secret message by observing
the time intervals between variable change notifications. Our
practical setup successfully sends a binary secret embedded
within two distinctive notification intervals, symbolizing binary
1 and 0. As the covert timing channel attacks pose considerable
risk to OPC UA-based ICS, we believe directing future research
efforts toward detecting and mitigating such threats is essential.
The study underscores the urgency to enhance the security of ICS
as they become increasingly interconnected and, consequently,
more susceptible to sophisticated cyber attacks.

Index Terms—covert timing channel attack, OPC UA, indus-
trial control systems, cybersecurity

I. INTRODUCTION

Industrial Control Systems (ICS) represent a critical pillar
in the operation of many cyber-physical systems, supporting
our increasingly interconnected global infrastructure. These
systems are central to managing various devices and sys-
tems, from straightforward mechanisms like traffic lights to
sophisticated setups in nuclear power plants or advanced
manufacturing facilities. The evolution of industrial Ethernet
has effectively transformed ICS from isolated entities into
interconnected systems that communicate with broader Infor-
mation Technology (IT) networks. This change has prompted
an unprecedented confluence of IT and operational technology
[1].

The increased interconnectivity has certainly brought sig-
nificant advantages in automation and operational efficiency.
However, this interconnectedness has inadvertently exposed
these systems to new frontiers of cyber threats. Malevolent
actors have been known to manipulate vulnerabilities in ICS,
disrupting critical services or, in more severe cases, inflicting
physical harm [2]. The landscape of threats has become
increasingly sophisticated with the emergence of advanced

persistent threats that employ stealthy techniques to stay
concealed within networks for extended durations.

One such elusive technique is the covert timing channel
(CTC) attack, where the temporal sequencing of messages
is manipulated to encode and secretly transmit information,
as illustrated in Figure 1. The firewall monitors and allows
the packets based on their content. In contrast, sensitive or
confidential information is sent through the inter-arrival times
of the packets. In this example, longer intervals between packet
arrivals represent a binary ‘0’, while shorter intervals signify
a binary ‘1’.

While traditionally associated with IT network breaches,
this method poses a significant risk to ICS, especially those
based on the OPC Unified Architecture (OPC UA). OPC UA
has gained widespread acceptance as the de facto standard
for industrial Ethernet-based ICS communication, given its
capabilities in interoperability, robust security features, and
overall system resilience [3]. Yet, the possibility of CTC
attacks in such a setting still needs to be explored.

The focus of this paper lies in filling this research gap. We
delve into theoretical and practical analyses of the feasibility
of conducting a CTC attack on an OPC UA-based ICS. The
theoretical aspect of our research is based on defining a
mathematical model of this kind of attack. The practical aspect
of our study rests on exploiting the monitored item feature of
OPC UA. We implement a method to encode a secret message
into the time intervals between variable change notifications,
thereby enabling hidden information transmission from the
server to the client.

With this paper, we make the following contributions to
advance the field of study:

1) identifying potential OPC UA features vulnerable to
CTC attacks (Section III),

2) defining the theoretical framework for modeling such
attacks (Section IV),

3) implementing and demonstrating a sample attack (Sec-
tion V),

4) projecting promising directions for future work (Section
VI).

Our endeavor, through this study, is to deepen the un-
derstanding of security vulnerabilities inherent in OPC UA-
based ICS. We aim to provide a foundation to promote
the development of effective countermeasures against such
sophisticated threats, thereby fortifying these critical systems.



0 1 1 0
Server Client

Fig. 1. Covert Timing Channel Attack.

II. RELATED WORK

Cabuk et al. propose a network covert channel via timing
and provide a foundation for covert communication concepts
in networked systems [4]. It introduces a timing channel
implementation, presents performance data, and discusses its
detectability. This work is similar to our research regarding
the CTC concept but differs in its application domain, as it is
not focused on OPC UA but on IP-based networks.

Liu et al. advance the field by presenting a robust and
undetectable CTC [5]. They introduce a method to modulate
the message in the inter-packet delay, approximating regular
traffic, and use spreading techniques for robustness.

Archibald and Ghosal present a model-secure CTC utilizing
Fountain codes [6]. The authors enhance the robustness of
CTC against jitter, a significant concern in networked com-
munications. Their approach is novel and could be applied in
an OPC UA environment.

Mazurczyk et al. offer a taxonomy for hiding methods
in network communication [7]. They focus on creating a
comprehensive categorization and understanding of various
data-hiding methods. This work provides insights into the
broader context of data hiding, including the timing channel
attacks.

Two significant related works focus on ICS. Alcaraz et
al. discuss covert channels in industrial networks and present
two signaling strategies exploiting the Modbus/TCP protocol
[8]. They demonstrate the potential risks associated with such
attacks and propose countermeasures. Similarly, Hildebrandt et
al. investigate potential attack vectors on Programmable Logic
Controllers using the OPC UA protocol [9]. They implement a
supply chain attack and discuss detection mechanisms. These
two works are closely related to our research, albeit with
different attack methodologies.

Finally, Lamshöft and Dittmann investigate how known
patterns of information hiding can be applied to protocols
found in ICS networks [10]. This work demonstrates practical
applications of hidden channels in industrial communication
protocols, which is relevant to our research context. However,
the focus is on the Modbus/TCP protocol, not OPC UA.

Table I shows the position of our work among the related
works. Our study is the first to explore potential CTC attacks
in OPC UA, make the theoretical analysis, and implement a
sample attack.

III. COVERT TIMING CHANNEL POTENTIALS IN OPC UA

OPC UA is a machine-to-machine communication proto-
col for industrial automation [11], [12]. Its design strongly
emphasizes security, including authentication, authorization,
encryption, and data integrity. However, as with any system, it
is not entirely impervious to all potential threats. CTC attacks
are one type of possible threat, although it is essential to note
that these are not specific to OPC UA and could be conducted
on any networked system.

A CTC is an attack where information is extracted not
from the message itself but from the timing and order of
the messages. This type of attack is challenging to execute
and even more challenging to detect, as it exploits seemingly
normal behavior to transmit information.

Let us consider the software of an OPC UA server that
a 3rd party provides. The sub-supplier may include a tiny
”debugging” back door that allows him to receive considerable
data stored in memory within a small loop and later executed.
Even for source code reviewers, there may be no obvious way
for data to be received via a network and stored for execution.
However, a module considered part of timing-related optimiza-
tion, e.g., reduction of time jitters can stealthily evaluate the
hidden information described in this paper. To summarize, this
use case would facilitate the receipt of malware encoded by
stealth timing without an explicit ‘receive()’ function to be
detected during source code reviews. It would store the data
in a tiny loop for later execution. The absolute or relative
execution time for embedded servers not supporting clock time
services can also be encoded within the stealth timing-based
hidden data stream. Thus, the provision of the malware and
the effect of the malware could be decoupled entirely and,
therefore, even more challenging or impossible to trace.

Although OPC UA is a secure protocol, the following
features could be exploited for a CTC attack.

1) Session Activity: OPC UA uses sessions for commu-
nication between clients and servers. These sessions
have a unique identifier and state, and they begin with
a CreateSession service and end with a CloseSession
service. An attacker could manipulate the timing of these
sessions to send information covertly. For example, the
time gap between opening and closing sessions could
represent different bits of information.



TABLE I
COMPARISON OF OUR WORK WITH RELATED WORKS

System Focus Attack Type Implementation

Our work OPC UA Attack Timing Yes
[4] IP-based Attack & Detection Timing Yes
[5] General Attack Timing Yes
[6] General Attack Timing Yes
[7] Network Understanding - No
[8] Modbus/TCP Attack & Mitigation - Yes
[9] OPC UA Attack & Detection Storage Yes

[10] Modbus/TCP Attack & Detection Both Yes

2) Subscription and Monitored Items: OPC UA clients
can create subscriptions to monitor specific variables on
the server for changes. If the client is malicious, it could
attempt to use the timing or frequency of subscriptions
to send covert signals. For example, subscribing and
unsubscribing from a variable in a specific pattern could
be used to encode data.

3) Data Sampling Rates: OPC UA allows clients to spec-
ify the rate at which data for a particular monitored item
is sampled. This rate can vary between subscriptions,
and it is possible that an attacker could manipulate this
rate to create a covert channel. By changing the sampling
rate, the attacker could effectively modulate a signal
within the regular operation of the system.

4) Service Request Timing: OPC UA allows clients to
specify the rate at which data for a particular monitored
item is sampled. This rate can vary between subscrip-
tions, and it is possible that an attacker could exploit
this rate to create a covert channel. By changing the
sampling rate, the attacker could effectively modulate a
signal within the regular operation of the system.

5) Network Traffic: Network traffic in an OPC UA system
could be manipulated for covert communication. For
example, an attacker could modulate the message trans-
mission rate or the size of data packets to send covert
signals. Timing fluctuations or delays in communication
packets can also provide a medium for CTCs.

6) Data Value Update: In OPC UA, the server updates the
client on changes to the monitored items. The timing
or frequency of these updates could theoretically be
manipulated to send covert signals. For example, the
rate or pattern of these updates could represent encoded
data.

7) Notification Messages: When a monitored item
changes, the server sends a NotificationMessage to the
client. The timing and frequency of these notifications
could be exploited in a timing attack. For example,
varying the delay between notifications or sending notifi-
cations in a specific sequence could encode information.

8) Asynchronous Response to Service Requests: In re-
sponse to a service request from a client, a server
generates a service response. Delays or patterns in these
responses could be used to send signals covertly.

9) KeepAlive Messages: OPC UA servers send KeepAlive

messages periodically to inform clients that the subscrip-
tion is still active. The timing of these messages could
be manipulated to provide a CTC.

10) Redundant Server Failover: OPC UA supports server
redundancy, where a backup server can take over if the
primary server fails. The timing and pattern of these
failovers could potentially be manipulated for a covert
timing attack.

11) Status and Diagnostic Information: The server often
provides status and diagnostic information to clients.
The timing of these updates or the specific information
chosen for updates could be used in a timing attack.

Table II shows the overview of potential CTC attacks in
OPC UA. They are grouped under client-to-server or server-
to-client communication directions.

IV. THEORETICAL FRAMEWORK

CTCs encode information by utilizing the temporal variance
of communication events. This section gives the theoretical
framework for CTC attacks.

A. System Model
Consider a sender who encodes a binary secret within the

temporal gaps, or inter-packet gaps, between the sequence of
packets. Let us denote the inter-packet gap corresponding to
the bit ‘0’ as T0 and for bit ‘1’ as T1. The receiver’s task is to
decode this binary secret by analyzing the inter-packet gaps
of the received packets.

The symbol η denotes the jitter within the channel. This
jitter causes random time shifts that each packet may indi-
vidually experience during transmission. We assume that this
jitter is bounded, formally expressed as −δ ≤ η ≤ δ.

B. Decoding
Despite the presence of jitter, it is necessary for the receiver

to accurately differentiate between the inter-packet gaps for
bit ‘0’ and bit ‘1’ to ensure successful decoding. Let the inter-
packet gap signaling bit ‘i’ be represented as ti + 2η.

The receiver interprets a received bit as ‘0’ if the inter-
packet gap is closer to T0 and interprets it as ‘1’ if it is closer
to T1. Therefore, the decision boundaries for the receiver can
be expressed as:{

Decode as ‘0’ if |T0 − (ti + 2η)| < |T1 − (ti + 2η)|,
Decode as ‘1’ if |T0 − (ti + 2η)| > |T1 − (ti + 2η)|.



TABLE II
COVERT TIMING CHANNEL POTENTIALS IN OPC UA

Communication Direction OPC UA Feature Potential Covert Timing Attack

Client-to-Server

Session Activity Manipulate timing of session creation, usage, closure
Subscription and Monitored Items Manipulate timing or frequency of subscriptions
Data Sampling Rates Change sampling rates to encode data
Service Request Timing Manipulate timing or sequence of service requests
Network Traffic Modulate rate of message transmission or size of data packets

Server-to-Client

Data Value Update Manipulate timing or frequency of updates
Notification Messages Vary timing or sequence of notifications
Asynchronous Response Vary delays or patterns in responses
KeepAlive Messages Manipulate timing of KeepAlive messages
Redundant Server Failover Manipulate timing or pattern of failovers
Status and Diagnostic Information Vary timing of updates or information chosen for updates

C. Error Probability

Errors in decoding can occur when the jitter causes the inter-
packet gap for one bit to cross the decision boundary and be
closer to the inter-packet gap for the other bit. Let’s denote
the error probability as Pe, representing the probability that
jitter culminates in an incorrect bit decoding. We can compute
this probability by assuming that the jitter η is uniformly
distributed over the interval [−δ, δ].

Consider the instance when the transmitted bit is ‘0’, i.e.,
ti = T0. An error arises when the summation of the inter-
packet gap and the two jitters, denoted as T0+2η, falls within
the decision boundary for bit ‘1’, closer to T1. This occurs
when |T0 − (T0 + 2η)| > |T1 − (T0 + 2η)|. To derive the
error probability Pe0 (bit ‘0’ wrongly decoded as ‘1’), consider
the case when T0 + 2η is interpreted as bit ‘1’. Given the
bounding on η, the maximum value of η can be δ. Therefore,
the probability of this event is the ratio of the range of η that
satisfies the condition to the total range of η, i.e.,

Pe0 = max

(
0,

4δ − |T1 − T0|
8δ

)
.

Due to the symmetry of the problem, the error probability
for the bit ‘1’ would be identical to that for ‘0’, i.e., Pe1 = Pe0.
Consequently, if the bits ‘0’ and ‘1’ are equally likely, the total
error probability will be Pe = Pe0. The error probability, Pe,
plays a significant role as it influences both the success criteria
of the attack and the achievable bit rate.

D. Success Criteria

The covert channel attack is successful if the receiver can
decode the binary secret correctly. Firstly, both inter-packet
gaps T0 and T1 should be greater than the jitter of two
sequential packets, formally expressed as:

T0, T1 > 2δ

Secondly, we need to minimize the error probability to zero.
So, the possible values, or in other words, the ranges of inter-
packet gaps T0 and T1 should not overlap to be decoded
correctly. As each inter-packet gap may experience two times
the jitter, the difference should be greater than four times the
jitter, formally expressed as:

|T0 − T1| > 4δ

These conditions guarantee that even under a worst-case
scenario, where the jitter results in maximum deviation, the
receiver can still correctly distinguish between bit ‘0’ and bit
‘1’.

E. Maximum Achievable Bit Rate

Assuming the secret is a random binary, the bit rate of the
attack is determined by the frequency of the packets sent,
which is inversely proportional to the average of the two inter-
packet gaps. Formally, the bit rate R can be expressed as:

R =
1

T0+T1

2

To maximize this bit rate, we need to minimize the average
of the two inter-packet gaps while still maintaining the success
criteria. Considering the success criteria, the minimum value
for T0 and T1 is 2δ, and the minimum difference between
them is 4δ. Therefore, the minimum average of T0 and T1 is
4δ, which leads to the maximum achievable bit rate:

Rmax =
1

4δ

This maximum bit rate is achieved when the inter-packet
gaps are chosen such that T0 = 2δ and T1 = 6δ or vice
versa. This ensures that the average of the inter-packet gaps
is minimized while still satisfying the success criteria.

Let’s consider an example to better understand the theoret-
ical framework. We assume the jitter, denoted by δ, in the
system to be 5 ms. Let us choose values for T0 and T1 that
hold the success criteria. In this case, we choose T0 = 10
ms and T1 = 30 ms. These values meet the success criteria
since T0 and T1 are greater than or equal to 2δ = 10 ms,
and |T0 − T1| = 20 ms, which is equal to 4δ = 20 ms. The
maximum achievable bit rate is calculated using the formula:

Rmax =
1

4δ
= 50 bits/s.



Thus, in this example, with a correct selection of inter-
packet gaps, the receiver can successfully decode the trans-
mitted binary secret with a bit rate of 50 bps despite a jitter
of 5 ms in the system.

F. Discussion

In summary, we have presented a theoretical framework
based on defining and analyzing the mathematical model of
CTCs. Through a study of the system model, we have charac-
terized how the sender encodes information in the inter-packet
gaps of a packet sequence and how the receiver decodes this
information. This analysis was extended to incorporate factors
such as channel jitter, revealing their significant influence on
decoding accuracy.

We have derived expressions for essential parameters like
the error probability and maximum achievable bit rate, consid-
ering various factors such as jitter distribution. These expres-
sions provide insights into the performance and limitations of
the CTC attacks.

Altogether, the framework laid out in this section offers a
foundation for understanding and further researching CTCs.
It illuminates the interactions between multiple variables in
these systems and provides a roadmap for future exploration
of this critical topic.

V. IMPLEMENTATION

This section details our implementation, demonstrating a
CTC attack in OPC UA using the monitored item and sub-
scription features.

A. Covert Timing Channel Attack Mechanism

Our project is implemented using the node-opcua library1.
It is one of the most commonly used open-source OPC UA
libraries designed to develop OPC UA servers and clients [13].
It is built on the Node.js platform, leveraging JavaScript’s
event-driven nature to create efficient, high-performance ap-
plications for industrial automation and IoT devices [14].
OPC UA, as a set of standards for industrial automation,
offers interoperability and security for manufacturing and
other process control systems. The node-opcua library makes
these standards accessible to developers by providing many
functionalities, including encrypted communications, a binary
protocol for efficient data transfer, subscription services for
real-time data monitoring, and more [15], [16].

Our server is written in JavaScript, and the client is in
TypeScript. The client subscribes to a variable in the server,
which enables the client to receive a notification message
whenever the subscribed variable changes. The server sends
a notification message to the client every time there is a
change in the value. The server encodes a secret between the
notification messages by intentionally changing this value. The
client observes the intervals between the received notifications
to decode the secret embedded by the server.

1https://github.com/node-opcua/node-opcua

B. Results

In our implementation, we have selected a 1-second interval
to represent bit 1 and a 2-second interval to represent bit
0. This relaxed encoding choice is made for demonstrative
purposes and can be optimized according to the jitter and the
calculations shown in the theoretical framework section. With
this encoding, the server correctly transmits a message to the
client at a 0.66 bps bit rate. The bit rate can, of course, increase
depending on the network conditions.

Performance metrics are not significantly related to our con-
text. The attack aims to transmit a secret correctly, regardless
of the bit rate. Such attacks are mainly used for transmitting
small but sensitive or confidential data, such as passwd, instead
of a multimedia stream.

CTC attacks, like all cyberattacks, require specific condi-
tions to be effective. The presence of a network component,
such as an intrusion detection system, that strictly controls
or monitors the consistency of packet interarrival times can
prevent these attacks. Thus, the effectiveness of the attack
discussed in this paper is predicated on either the absence
or the poor design of traffic regulation mechanisms. Such
network security gaps allow attackers to manipulate the timing
between packet arrivals without triggering any alarms [17].

C. ASCII Mapping and Delimiter Implementation

We successfully run the attack while transmitting the secret
as a bitstring. Furthermore, we have also implemented ASCII
mapping to make the output of the attack in a human-
readable form. This mapping converts a given message to its
corresponding ASCII bitstring before transmission.

The client may start receiving notifications at any time.
Thus, it cannot determine when to start decoding the received
bits. To counter this issue, we used a unique delimiter,
”111111110”, to indicate the beginning of the message. This
delimiter is chosen due to its inability to occur arbitrarily in
a stream of ASCII characters, making it suitable for our use
case.

The server is configured to transmit the encoded message
in a loop. When the client encounters the delimiter during the
decoding process, it converts the received bitstring back into
ASCII characters, revealing the secret message.

D. Reproducible Research

We have created a public repository on GitHub2, which
hosts all the scripts and instructions required to demonstrate
the attack. The repository contains two scripts:

• server.js, an OPC UA server that encodes a secret mes-
sage into notification delays, and

• client.ts, an OPC UA client that connects to the server,
monitors the notifications, and decodes the delays into
the original secret message.

Interested readers are encouraged to clone this repository,
follow the setup and execution instructions in the README

2https://github.com/erkinkirdan/CovertTimingChannelAttack OPCUA

https://github.com/node-opcua/node-opcua
https://github.com/erkinkirdan/CovertTimingChannelAttack_OPCUA


file, and explore the demonstration first-hand. This hands-
on experience provides valuable insights into executing the
practicalities and nuances of the attack.

VI. CONCLUSION

In conclusion, this research paper explores the CTC attacks
on ICS, specifically within the OPC UA framework. As
ICS become more intertwined with IT networks, they are
increasingly exposed to sophisticated cyber threats, including
CTC attacks. By analyzing this potential threat theoretically
and practically, we identified vulnerabilities within the OPC
UA features, particularly the monitored item feature. We
demonstrated the feasibility of these attacks by successfully
transmitting a secret embedded within the notification inter-
vals. The significance of our findings is amplified by the
increasing adoption of OPC UA for industrial Ethernet-based
ICS communication. This study emphasizes the urgent need to
further research in this area, specifically focusing on develop-
ing effective detection and mitigation strategies to safeguard
the increasingly interconnected ICS, which are critical to
our global infrastructure. This work provides a foundation
for understanding and fortifying these systems against CTC
attacks.

Several potential future directions emerge from the research
on covert channel attacks. The concept of artificial stegano-
graphic network data generation, as proposed by [18], could
offer valuable training and test data for evaluating detection
mechanisms, thus aiding in combating covert channel attacks.
This aspect could be incorporated into future studies. [19]
and [20] present machine learning-based methods to detect
covert channel attacks on ICS. Adapting such techniques in
the context of OPC UA-based ICS could provide an effective
means to identify and mitigate CTC attacks. Furthermore,
there could be an exploration into the usage of TCP payload
entropy as engineered features, as indicated by [19], or a
Convolutional Neural Network based detection approach, as
mentioned in [20]. These techniques could be influential in
enhancing the accuracy of detecting CTC attacks and thus
improving the security of OPC UA-based ICS.

REFERENCES

[1] S. Paiho, J. Kiljander, R. Sarala, H. Siikavirta, O. Kilkki, A. Bajpai,
M. Duchon, M.-O. Pahl, L. Wüstrich, C. Lübben et al., “Towards
cross-commodity energy-sharing communities–a review of the market,
regulatory, and technical situation,” Renewable and Sustainable Energy
Reviews, vol. 151, p. 111568, 2021.

[2] K. Waedt, I. Ben Zid, J. Schindler, and E. Kirdan, “Cybersecurity
education programmes & laboratories brainstorming,” in Cybersecurity
for Critical Infrastructure Protection via Reflection of Industrial Control
Systems. IOS Press, 2022, pp. 100–107.

[3] N. Mühlbauer, E. Kirdan, M.-O. Pahl, and G. Carle, “Open-source opc
ua security and scalability,” in 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), vol. 1.
IEEE, 2020, pp. 262–269.

[4] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels:
design and detection,” in Proceedings of the 11th ACM conference on
Computer and communications security, 2004, pp. 178–187.

[5] Y. Liu, D. Ghosal, F. Armknecht, A.-R. Sadeghi, S. Schulz, and
S. Katzenbeisser, “Hide and seek in time—robust covert timing chan-
nels,” in Computer Security–ESORICS 2009: 14th European Symposium
on Research in Computer Security, Saint-Malo, France, September 21-
23, 2009. Proceedings 14. Springer, 2009, pp. 120–135.

[6] R. Archibald and D. Ghosal, “A covert timing channel based on fountain
codes,” in 2012 IEEE 11th International Conference on Trust, Security
and Privacy in Computing and Communications. IEEE, 2012, pp. 970–
977.

[7] W. Mazurczyk, S. Wendzel, and K. Cabaj, “Towards deriving insights
into data hiding methods using pattern-based approach,” in Proceedings
of the 13th International Conference on Availability, Reliability and
Security, 2018, pp. 1–10.

[8] C. Alcaraz, G. Bernieri, F. Pascucci, J. Lopez, and R. Setola, “Covert
channels-based stealth attacks in industry 4.0,” IEEE Systems Journal,
vol. 13, no. 4, pp. 3980–3988, 2019.

[9] M. Hildebrandt, K. Lamshöft, J. Dittmann, T. Neubert, and C. Vielhauer,
“Information hiding in industrial control systems: An opc ua based
supply chain attack and its detection,” in Proceedings of the 2020 ACM
Workshop on Information Hiding and Multimedia Security, 2020, pp.
115–120.

[10] K. Lamshöft and J. Dittmann, “Assessment of hidden channel attacks:
Targetting modbus/tcp,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11 100–
11 107, 2020.

[11] E. Kirdan, F. Rezabek, N. Mülbauer, G. Carle, and M.-O. Pahl, “Real-
time performance of opc ua,” arXiv preprint arXiv:2310.17052, 2023.

[12] I. E. Commission, “Opc unified architecture,” International Electrotech-
nical Commission, Tech. Rep., 2020.

[13] N. Mühlbauer, E. Kirdan, M.-O. Pahl, and K. Waedt, “Feature-based
comparison of open source opc-ua implementations,” INFORMATIK
2020, 2020.

[14] J. Schindler, S. Belaidi, E. Kirdan, and K. Waedt, “Securing javascript
runtime of opc ua deployments,” INFORMATIK 2022, 2022.

[15] E. Kirdan, J. Schindler, and K. Waedt, “Optimizing opc ua deployments
on node. js through advanced logging techniques,” 2023.

[16] J. Schindler, E. Kirdan, and K. Waedt, “Secure opc ua server configu-
ration for smart charging stations,” INFORMATIK 2021, 2021.

[17] R. Yatagha, K. Waedt, J. Schindler, and E. Kirdan, “Security challenges
and best practices for resilient iiot networks: Network segmentation,”
2023.

[18] T. Neubert, C. Vielhauer, and C. Kraetzer, “Artificial steganographic
network data generation concept and evaluation of detection approaches
to secure industrial control systems against steganographic attacks,”
in Proceedings of the 16th International Conference on Availability,
Reliability and Security, 2021, pp. 1–9.

[19] H. Li and D. Chasaki, “Network-based machine learning detection of
covert channel attacks on cyber-physical systems,” in 2022 IEEE 20th
International Conference on Industrial Informatics (INDIN). IEEE,
2022, pp. 195–201.

[20] T. Neubert, A. J. Caballero Morcillo, and C. Vielhauer, “Improving per-
formance of machine learning based detection of network steganography
in industrial control systems,” in Proceedings of the 17th International
Conference on Availability, Reliability and Security, 2022, pp. 1–8.


	Introduction
	Related Work
	Covert Timing Channel Potentials in OPC UA
	Theoretical Framework
	System Model
	Decoding
	Error Probability
	Success Criteria
	Maximum Achievable Bit Rate
	Discussion

	Implementation
	Covert Timing Channel Attack Mechanism
	Results
	ASCII Mapping and Delimiter Implementation
	Reproducible Research

	Conclusion
	References

