
1

SideGuard: Non-Invasive On-Chip Malware
Detection in Heterogeneous IoT Systems by

Leveraging Side-Channels
Fatemeh Arkannezhad, Pooya Aghanoury, Justin Feng, Hossein Khalili, Nader Sehatbakhsh

SsysArch Lab, ECE Department, University of California, Los Angeles, CA, USA

Abstract—As heterogeneous systems become more common
and diverse in IoT and CPS settings, securing these systems
against malware has become a daunting task. To combat this,
real-time hardware and/or (hardware-)software malware detec-
tion has gained popularity. Hardware malware detectors are
effective but often require invasive changes to the CPU, hence
limiting their usefulness in diverse settings. Software methods are
non-invasive but often come with large performance overheads
and/or disruptions to the main functionality of the device.

This study proposes SideGuard, a new, non-invasive approach
for detecting malware by analyzing the system’s internal power
consumption. With a tailored power sensor, our method utilizes
this measured power consumption signal as a stand-in for
program behavior. It collects training data, understanding how
signals should appear in different program sections during
proper execution. It then monitors execution, identifying in-
stances where the observed signal deviates from the expected
ones. For monitoring, the crucial idea is to indirectly measure
power using customized sensors on an embedded FPGA or
co-processor common in modern heterogeneous IoT systems.
Notably, the monitoring unit (e.g., embedded FPGA) doesn’t
need a direct CPU connection but simply shares the power
source, offering a key advantage: the malware detection unit
requires no CPU changes, resulting in zero performance, power,
and area overhead for the main CPU. Implementing this idea
requires addressing several new challenges compared to prior
work. Specifically, we introduce a new software-signal processing
co-design approach. Results show that our approach can achieve
>95% accuracy in detecting real-world malware. As heteroge-
neous IoT systems become more common, we believe our method
is a strong contender for securing future hardware systems.

I. INTRODUCTION

Computing systems, especially embedded and smart IoT
systems, are increasingly targeted by malware [1]. There are
various methods to detect malware. Among them, hardware
malware detectors (HMD) have gained attention in recent
years [2], [3], [4]. They are favorable because they don’t re-
quire complex software support or cause significant slowdowns
in the system.

HMDs typically function by incorporating two key elements
into the system: monitoring logic that gathers hardware-level
information (e.g., performance counters) about the application,
and a classifier to identify potential malware and anomalies.
While highly effective, the main drawback of HMDs is the
need for invasive changes to the device’s CPU and/or its under-
lying system. Despite being feasible for many systems, it is not
suitable or even possible for others, especially those already

CPU

SideGuard

Heterogeneous System

power

Sen.Det.

CPU

Sen.

Classifier

FPGA or
Co-Processor or

Chiplet

Heterogeneous System

Fig. 1. Conventional hardware malware detectors (left) vs. our proposed
method (right). Instead of collecting performance counters from the CPU and
using a classifier, our method indirectly measures power consumption. No
connection between the monitor and CPU is needed.

in use, older systems, and custom heterogeneous systems in
which the system integrator lacks control over the internal
design of each hardware component and can only add/remove
components. Given the shift toward more heterogeneity, where
various components including CPUs, FPGAs, and sensors are
integrated on the same device/chip, there is a strong demand
for techniques that can match the capabilities and performance
of HMDs without invasive modifications.

To address this demand, we propose a new on-device non-
invasive malware detection method called SIDEGUARD. The
key insight is leveraging on-chip power side-channel as a
means to indirectly monitor the system, and using a new
detection algorithm that utilizes this data to detect anomalies.
As shown in Figure 1, instead of collecting hardware-related
features from the CPU, SIDEGUARD indirectly measures the
power consumption (i.e., a side-channel signal) of the CPU
using customized sensors (“Sen”) implemented as a separate
component. This data is then used by our detection algorithm
(“Det.”) also implemented on the same unit, collectively
creating an on-device malware detection unit.

The key advantage of this method is that it doesn’t require
any hardware support from the CPU or any connection to
it, unlike current HMDs. This feature broadens its suitability
for various systems with SoCs. In such setups, the malware
detection unit can reside in a distinct component (an FPGA)
or as a separate IP (in an SoC). Additionally, as the detection
module is physically separated from the CPU, it creates an
“air gap,” further enhancing robustness.

Designing and implementing SIDEGUARD involves several
new contributions. First, although the utilization of on-chip
power sensors (e.g., ring oscillators) has been employed pre-
viously for side-channel attacks and hardware Trojan detec-
tion [5], [6], [7], [8], [9], this study stands out as the first to

2

Sensors
Classification

Signal
Analysis

2

3

4CPU
App 1() {
...
}
App 2() {
...
malware()
... System

SideGuard

Classification
2

3

4CPU
App 1() {
...
}
App 2() {
...
malware()
...

Classification

Power
Side-Channel

2

3

4CPU
App 1() {
...
}
App 2() {
...
malware()
...

1

Fig. 2. Software running on a CPU creates unintentional power consumption
fluctuations (i.e., power side-channels). SIDEGUARD captures this information
using an array of on-chip power sensors and leverages a signal analysis and
detection algorithm to find anomalies.

apply on-chip power consumption for dynamic program mon-
itoring and consequently for detecting malware. Unlike earlier
studies, dynamic program monitoring introduces entirely new
research inquiries.

Second, creating SIDEGUARD involves tackling two new
research challenges. The initial one is devising and executing
the malware detection algorithm. The fundamental distinction
between our approach and current classifiers for malware
detection lies in the nature of our features. Traditional HMDs
utilize hardware performance counters, which offer a naturally
discrete feature space. In contrast, our problem deals with a
continuous time-series data feature space. Also, in contrast
to previous methods that used on-chip power monitoring for
detecting Trojans, our task (dynamic program monitoring)
demands a significantly more intricate detection algorithm.
The difficulty stems from the need to monitor a diverse range
of software applications and types of malware. This is a
departure from the monitoring of just a single application (such
as cryptographic cores) and a single malicious behavior, as
seen in Trojan detection techniques.

The next challenge involves the system and hardware design
aspects of SIDEGUARD. Two main questions need addressing
here. Firstly, how to design the sensors and manage continuous
data effectively to reduce storage usage? Secondly, considering
the power and storage constraints on the device (especially
for embedded and IoT devices) and the requirement for an
advanced signal processing method to handle time-series data,
how can a detection algorithm be implemented efficiently in
terms of both area and power usage?

We systematically analyze the effectiveness of our detection
framework using various malware on a real SoC system, a
DE1-SoC board. In short, the key contributions of this paper
are as follows.
• We propose a new non-invasive hardware malware detection

mechanism suitable for heterogeneous IoT systems.
• We design and implement a new detection algorithm for

time-series power side-channel data collected by our custom
sensors.

• We evaluate our design and implementation using different
malware families and standard benchmark applications.

• Our framework is implemented on two real-world SoC
systems as a proof-of-concept.

II. SYSTEM DESIGN OVERVIEW

Threat Model and Assumption. We focus on malware
detection for heterogeneous “smart” embedded/IoT devices

such as robotic devices, medical devices, and smart home
systems. We target devices equipped with a system-on-chip
(SoC) and/or heterogenous 2.5D systems, comprising various
IPs and/or chips/chiplets. These components include sensors,
actuators, and processing elements where one or multiple cores
are controlled by an operating system. We assume that our
detection framework is implemented on the system using a
hardware component such as an embedded FPGA (eFPGA)
and/or a co-processor implemented as a separate IP and/or
chip. It’s worth noting that comparable assumptions were made
in previous hardware malware detection frameworks, utilizing
the eFPGA/co-processor to implement the classifier [3], [10],
[2], [4]. Therefore, SIDEGUARD doesn’t introduce new hard-
ware; instead, it suggests a method to repurpose the existing
hardware.

We assume that the system is initially secure. The system,
however, can get compromised as it starts executing various
applications. Once it is compromised, the adversary controls
the entire CPU and kernel OS. Furthermore, we assume that
SIDEGUARD and its underlying hardware (i.e., eFPGA) is part
of the root-of-trust (RoT) and can only be re-programmed
through a secure update. Further, the RoT is additionally
protected from an adversary since the monitoring framework
is physically separate from the CPU and not controlled by
the OS (i.e., air-gapped). Providing this air-gap eliminates the
possibility of the monitor being infected by the same attack
vectors that have compromised the host system.

For detecting malicious activities, SIDEGUARD doesn’t
possess a priori knowledge about the type of attack or
its power signatures and detection solely depends on the
signals gathered by the sensors during monitoring. Further,
SIDEGUARD always maintains accurate reference models for
malware-free signatures. These models are stored internally
and remain uncompromised. The models, however, can be
updated through a secure update, if needed. Moreover, we
assume that the adversary is familiar with the system and
program(s), including any existing vulnerabilities, and can
manipulate the system by sending random inputs.

System Overview. The high level design of SIDEGUARD is
shown in Figure 2. Internally, SIDEGUARD consists of three
main components: a sensor array, a signal analysis unit, and
a classifier. We briefly explain each in the following.

The first component is the on-chip power sensors (2).
An essential feature of SIDEGUARD is its complete non-
invasiveness. Therefore, the sensors (power or other types)
should not have direct connections to the CPU. Instead, their
design should allow indirect monitoring of the CPU (when
running different applications). To achieve this, we utilize a
time-to-digital converter (TDC) primitive [8]. These sensors
are capable of tracking alterations in power usage within the
shared power distribution network (PDN) by sensing changes
in the delay of a propagating signal through a chain of buffers
or other logic, thereby capturing the behavior of various appli-
cations operating on the host CPU (1). A primary challenge
in our design is the balance between sensor circuit size and
precision. While more sensors provide more accurate data,
they also occupy additional space and consume more power.

3

We opt for a design with 32-bit granularity. In Section IV-B,
we’ll delve into our design specifics and share our accuracy
detection results.

The second element is a signal analysis module. As de-
tailed in Section I, the fundamental distinction between our
problem and current HMD solutions is our analysis involving
a continuous time-domain signal. Consequently, we present a
novel signal analysis algorithm (3 and 4). In our design, a
crucial strategy is adopting a co-design approach. This means
tailoring our signal analysis strategy to match the observed
behavior of the target software. Further specifics are provided
in the next section.

III. MALWARE DETECTION APPROACH

Problem Overview. Utilizing the sensors detailed in Sec-
tion II, a continuous stream of sampled data is fed to the
Signal Analysis module (refer to 1 - 3 in Figure 2). With
this time-series data, our goal is to pinpoint the initiation
of any malicious operations. To achieve that, we view the
gathered time series data, which we call signal, as a sub-
stitute for program behavior across time. Accordingly, we
compile training data outlining the expected appearance of the
collected data in various segments of the program. We then
track execution, identifying instances where the observed data
deviate (using a later-described metric) from the anticipated
pattern—indicating that the observed data are unlikely to result
from correct execution.

There are numerous methods to analyze time series. Ex-
amples include autoregressive integrated moving average
(ARIMA), seasonal decomposition of time series (STL), or
machine learning models like Long Short-Term Memory
(LSTM) networks. Specific to our malware detection, however,
the desired approach should be:
1) Capable of withstanding variations in program execution,

including slight changes in power consumption caused by
microarchitectural variations (such as cache misses), diverse
execution paths (due to branches), and others.

2) Resilient to temporal and process variations. This includes
variations due to the physical differences between one
device and another, potentially leading to slight changes
in power consumption when running the same program. It
also considers temporal fluctuations within the same device,
like variations in device temperature that might also result
in changes in power consumption.

3) Able to handle various programs with different behaviors
while accurately pinpointing unusual behaviors caused by
malware.

Detection Algorithm. To address these needs, SIDEGUARD
takes the following approach: Rather than directly processing
the time-domain signal, SIDEGUARD first breaks down the
signal into fixed-size pre-determined sequences (which we
call frames) and then employs the Short-Term Fourier Trans-
form (STFT) to transform each frame to a frequency-domain
spectrum (which we call frequency frame or FF). Each FF is
represented as a vector of size m, where m denotes the number
of frequency bins. The features utilized for analysis within
SIDEGUARD consist of the amplitudes associated with each

Frame
Selection [..., vi, vi+1, vi+2, ..., vi+n, ...]

[..., vi, vi+1, vi+2, ..., vi+n, ...]

STFT [f1, f2, ... , fm]

FF

[f11, f12, ... , f1m]
[f21, f22, ... , f2m]

[fz1, fz2, ... , fzm]
...

Training Samples

State Analysis

Decision?

Fig. 3. SIDEGUARD analyzes the collected power signals (a time series)
by grouping them into overlapping frames and taking a short-time Fourier
transform (STFT) to create frequency features (FF). These frequency-domain
features are then used for analysis. The main advantage of this approach is
its robustness to program and device variations.

frequency bin. All training and monitoring activities within
SIDEGUARD are conducted on this sequence of features.
These steps are also shown in Figure 3.

To monitor a program using FFs, SIDEGUARD first identi-
fies unique program phases called regions. We define “region”
as a sequence of consecutive FFs where the distance between
any pair of FFs is less than TH . More formally:

{FFi}t+L
i=t is a region (of size L) if:

∀i ∈ {t ≤ i < t+ l} : Dist(FFi, FFi+1) < TH, (1)

where Dist(,) is defined as:

Dist(FFi, FFi+1) =

K∑
j=1

(FFisortA [j]− FFi+1sortA [j])
2/j.

(2)
To identify a region, SIDEGUARD takes the top K elements

of an FF (i.e., by sorting an FF using the amplitude of each
bin in ascending order and storing the index in FFisortA) and
computes the distance (between indices). SIDEGUARD then
defines a “new” region once the distance between consecutive
FFs exceeds the threshold. As indicated by Equation 1, the
comparison of indices corresponds to the squared distance
between the two. Moreover, this comparison is weighted by
dividing it by the iterator, giving greater importance to more
prominent features (note that we sort FF by its amplitude first,
thus the first index is the most prominent element).

To clarify why we’ve chosen this method, consider the
following crucial observations: it is well-known that most
programs tend to have distinct phases and, more importantly,
they tend to repeat these phase behaviors [11], [12], [13], [14].
In simpler terms, programs often repeat actions, like executing
repetitive code with loops (e.g., FOR or WHILE loops).
This repetition means running a similar set of instructions
over and over. So, the power consumption should follow a
repetitive pattern, with the signal’s period matching the time
for each repetition. In our method, for specific lengths, frames
in SIDEGUARD become periodic signals. Their frequency-
domain transformations (FFs) also show this periodic nature.
Signal processing basics tell us that a periodic signal in
time has clear “spikes” in the frequency domain. So, certain
frequency bins in each FF should have significant magnitudes,
forming spikes. As the program goes through phases, its

4

0 200 400 600 800 1000 1200 1400 1600
9100

9150

9200

9250

9300

9350

9400

A
m

pl
itu

de

Time

Fr
eq

ue
nc

y

Time

// The (simplified) main loop
while(1) {

// Phase 1: read sensors
[speed, position] = ReadSpeed();

// Phase 2: read commands
cmd = ReadCommand();

// Phase 3: update the position
status = UpdateRobot(speed, position, cmd);

// Phase 4: status/output update
UpdateStatus(status, cmd);

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 4. A sample code for a robotic arm is shown on the left. This program has four main phases. The time-domain signal is shown in the middle. The bright
blue signal shows the moving average. The signal exhibits periodic patterns with each phase. The frequency-domain signal (waterfall plot) is shown on the
right. The signal shows clear periodic patterns for each phase, allowing SIDEGUARD to track the code using these frequency features (each bright line is a
feature).

Fr
eq

ue
nc

y

Time

Attack starts here

(a) (b)

Fig. 5. The difference between frequency-domain (FFs) signal in a normal
program vs. malware (SYN flood with a buffer overflow).

periodic behavior changes, showing up as different sets of
spikes in the frequency bins. The key idea is that these
magnitudes in frequency bins are a distinct and robust feature,
making it effective to classify devices.

Using the concept of regions, our algorithm reports anomaly
if (i) the current identified region is not part of observed
regions during the training time (i.e., the algorithm identifies
a “new” region that was never observed before), and/or (ii)
the transition between regions does not match with a “valid”
transition observed during the training time.

We opt for this method because it stems from a crucial
insight: malware exhibits fundamentally different behavior
compared to regular programs [13], [15]. In our system, this
translates to anticipating distinct and predictable phases in a
program’s execution. However, when potential malware dis-
rupts the program unexpectedly, the execution shifts, causing
significant changes in the monitored features, such as FFs and
the magnitude of each bin.

Finally, during the training phase, we execute a standard
application without malware to capture the power signal.
Subsequently, we identify distinct regions using the specified
metric. SIDEGUARD records an instance for each region,
noting the observed sequence of these regions. This proce-
dure is repeated for each application requiring profiling. An
important aspect of training is to ensure satisfactory coverage.
Since SIDEGUARD depends on observing valid regions during
training, it’s the user’s responsibility to execute the target
application with diverse inputs, ensuring comprehensive code
coverage. Methods for achieving this coverage are beyond the
scope of this paper, but examples include using techniques like
fuzzing and/or symbolic execution.

To showcase the details of the algorithm better, we use a
simple yet realistic example for a robotic arm application. The

code for this example is shown in Figure 4. This figure also
shows the time-domain and frequency-domain signals when
running this application on an SoC (a DE1-SoC board. Details
of the setup will be provided in Section IV-A).

Figure 4 shows that the program consists of four clear
phases: checking the sensors, executing commands, moving
the arm, and updating the status. To keep things simple, we
haven’t displayed the specifics of each step, but each phase
involves a series of actions. Crucially, the signals shown in
Figure 4 in both time and frequency domains suggest that
these phases have different patterns. In particular, looking
at this figure, it’s evident that FFs for each phase share
very similar patterns, noticeable as bright lines in the right
figure. Therefore, arranging each FF in ascending order and
comparing the top K elements (the brighter lines in the figure)
gives a reliable estimate of the current program region.

To check if this also works with malware, we compare the
signals while the robotic arm application is running to when
an attack occurs randomly during execution. In this test, we
carry out a buffer overflow followed by introducing a Mirai
malware payload [1] as an example of malware (you can find
more details about benchmarks in Section IV). The results
are displayed in Figure 5. As can be seen from the figure,
the attack starts somewhere during the second phase (when
the program is reading commands). It is evident from this
figure that running malware generates distinct signatures in
the frequency domain. Keep in mind that SIDEGUARD doesn’t
require any information about the malware or its signatures.
It solely detects the deviation of signatures (i.e., FFs) from
the anticipated behavior. For example, in this scenario, SIDE-
GUARD anticipates signatures akin to the second region or a
“new” region resembling what was observed during training
(i.e., the third region) but the generated samples from malware
do not look similar to any of them.
Robustness and Key Insights. A critical next step for
SIDEGUARD involves enhancing its robustness. Remember
that our algorithm needs to be resilient against variations in
program, temporal, and devices. The key to achieving this lies
in the concept of FFs. However, our further analysis reveals
that while FFs effectively handle program variations due to
their inherent averaging behavior, additional optimizations are
necessary to make SIDEGUARD robust against device and
temporal variations.

5

To address this, we implement the following improvements
in our feature selection and distance metric:
• Instead of defining a new region when two consecutive FFs

don’t match, we apply a smoothing filter where the criterion
for a new region becomes five samples. This allows us
to tolerate temporal noise when one or a few FFs behave
differently.

• To accommodate device variation, we modify Dist to
calculate the difference between adjusted samples instead
of absolute samples. More formally, we define idxi =
argmax{FFi} and then create FFisortA by storing |j −
idxi| for each sample instead of storing j (i.e., the index).
The two optimizations allow SIDEGUARD to tolerate tem-

poral and device-level variations. More results are provided in
Section IV-C.

IV. EVALUATIONS

A. Setup

Hardware. To implement SIDEGUARD, we use a Terassic
DE1-SoC development board. It has a dual-core cortex-A9
ARM core that supports Linux OS, an Intel Cyclone V
FPGA, SDRAM on both the core and FPGA, and additional
peripherals including SD card, JTAG, etc. This board is
representative of common SoCs that are used in the market that
have an embedded FPGA along with multiple hard cores [9].
Applications (and malware) are executed on one of the ARM
cores while SIDEGUARD is implemented on the FPGA. The
cores and the FPGA can communicate (through memory-
mapping) via a series of connection bridges and AXI buses
(FPGA-to-Hard Processor, f2h, and vice versa, h2f). Such
connection is not needed during the monitoring but can be used
for other purposes such as secure update, synchronization,
and/or alerting the CPU if/when malware is detected.

To assess SIDEGUARD’s resilience to device variations,
we employ an extra SoC board, specifically a ZynqTM

UltraScale+TM MPSoC. This board, akin to the DE1-SoC,
features ARM core(s) and an FPGA. Additionally, we replicate
our experiments on a second DE1-SoC board identical to the
original. We present the primary results, including accuracy,
area, and power, based on the DE1-SoC board. The other two
boards serve to scrutinize SIDEGUARD’s robustness. Refer to
Section IV-C for more detailed information.
Benchmarks and Mawlare. SIDEGUARD are evaluated using
five representative applications from the MiBench standard
benchmark suite [16]. Specifically, we use the following
applications: {bitcount, basicmath, qsort, susan, fft}. These
applications mirror typical behaviors of embedded systems
like security, telecom, and networks. This list is carefully
selected since each has unique features that are important for
thoroughly evaluating SIDEGUARD. For example, we specif-
ically chose “bitcount” and “basicmath” because they serve
as solid representations of applications with various distinct
regions and diverse activities, including nested loops, recursive
functions, and interactions with memory. “susan” and “fft”
were picked because they effectively embody common and
popular activities in the embedded system domain, such as
image processing and telecommunication.

To evaluate how well SIDEGUARD can detect malware, we
implement two classes of malware: Ransomware and a DDoS
attack by using a (Mirai) botnet. Each malware is executed
by exploiting (an intentional) software vulnerability (buffer
overflow) on each of the benchmark applications.

For the DDoS attack, we port the command and control
(C&C) and the bots from the Mirai’s open-source code to run
on our device. The DDoS payload execution begins right after
the buffer overflow exploit where a shell is invoked, and ends
after sending 100 SYN packets. The application then resumes
its normal activity. As another payload, we also implement
a simple Ransomware prototype payload that uses AES-128
with CBC mode to encrypt data. This encryption represents
the bulk of the execution activity created by Ransomware.
We believe that choosing these malware families offers a
practical assessment for SIDEGUARD and aligns with previous
research [3].

B. Implementation and Results

Implementation of SIDEGUARD. The SIDEGUARD is imple-
mented on the FPGA using Verilog HDL and Quartus. We use
default frequencies for the CPU and FPGA, i.e., 25 MHz and
50 MHz, respectively. For power monitoring, we implement
a time-to-digital converter (TDC) sensor network based on
the method proposed by Ma et al. [8]. In short, to transform
voltage fluctuations into a digital number, we utilize a carry
chain (CARRY) primitive, and flip-flops store this value. By
iterating this primitive, we establish a 32-bit voltage sensor.
Our circuit can attain approximately eight samples per clock
sampling rate.

Realizing SIDEGUARD detection logic involves leveraging
an FFT core and implementing a finite-state machine (FSM)
for FF analysis. A 64-point pipelined FFT engine is used. Fur-
thermore, SIDEGUARD requires internal memory for storing
the training data. We set K (see Equ. 1) to five hence storing
each region in the training data is a 5 × log(64)-bit data.
Applications used in our setup average around five regions
per application. As a result, the total storage required is less
than 100 bytes. For a real-world setup with 10-20 possible
applications, this number will be still below 1 KB.

Overall, the complete design of SIDEGUARD, encompassing
the sensors, FFT engine, detection logic, and memory storage,
occupies less than 35% of the entire FPGA. For a larger
size FPGA (e.g., Virtex FPGAs in UltraScale MPSoC), this
overhead is well below 20%.

On the CPU, SIDEGUARD imposes zero overhead since
the system is used as is, without requiring any additional
changes (software or hardware). Regarding power, SIDE-
GUARD consumes approximately 47 mW at its peak. This
amount constitutes about 3% of the total power of the system.
Results. To gauge how well SIDEGUARD detects malware, we
present the detection accuracy while using the five applications
described earlier. Specifically, we use five runs for training (to
capture temporal and program-level variations) and then use
1000 runs without malware and 500 runs with each malware
(i.e., DDos and Ransomware) for all five applications. Results
are shown in Table I.

6

TABLE I
RESULTS FOR DETECTING MALWARE IN FIVE REPRESENTATIVE APPLICATIONS FROM THE MIBENCH BENCHMARK SUITE. TWO MALWARE EXAMPLES
WERE USED: RANSOMWARE AND MIRAI BOTNET. FALSE POSITIVES (FPS) DENOTE NORMAL RUNS INCORRECTLY LABELED AS MALICIOUS, WHILE

FALSE NEGATIVES (FNS) REFER TO SCENARIOS WHERE MALWARE WAS EXECUTED BUT NOT DETECTED.

Bitcount Susan FFT Basicmath qsort
FP FN FP FN FP FN FP FN FP FN

1.7% .1% 4.1% <.1% 3.5% <0.1% 2.9% <0.1% 3.1% <.1%

TABLE II
RESULTS ASSESSING ROBUSTNESS AGAINST SCENARIOS INVOLVING THE

SAME DEVICE AND DIFFERENT DEVICES.

Experiment Average Change in Accuracy
FP FN

Same-Type Board (DE1) +2.7% 0%
Different Board (Zynq) +0.3% 0%

As shown in the table, SIDEGUARD can successfully detect
almost all the instances of the attack (i.e., >99.9% true
positive rate). The key reason for this is using Frequency
Features (FF) allows us to observe very different signatures
from the malware compared to the signature created by normal
activities. Table I also reports the false positive rates (FP). As
can be seen, in all instances, SIDEGUARD maintains a very
low FP (3.06% on average). This indicates that SIDEGUARD
is robust against different sources of program variations. In
Section III, we described various techniques used to enable
such robustness including the usage of FFs.

C. Further Robustness Analysis

To examine how well SIDEGUARD extends to other devices,
we repeat our experiments using two other setups. First,
we examine how well SIDEGUARD performs when another
instance of a same-type device is used (i.e., another DE1-SoC
board). Specifically, we train SIDEGUARD in one device and
then test on the other (using the same set of applications and
malware families explained in Section IV-B). The results are
shown in Table II.

The results indicate that SIDEGUARD is highly transferable
to other device types. As shown in Table II, our tests on
a different board (Xilinx Zynq) show very similar accuracy
(false positive and negative). For same-type devices, i.e., when
training on one and testing on the other, we see an average of
2.7% increase in false positive rates. However, the results are
still below 5% on average showing that SIDEGUARD is still
accurate when considering devices and/or temporal variations.

D. Comparison with State-of-the-Art

To conclude this section, we will briefly compare SIDE-
GUARD with existing methods. Two closely related groups in-
clude hardware malware detectors (HMDs) [3] and Trojan de-
tection methods using on-chip power consumption to identify
Trojans [8]. In comparison to the former, SIDEGUARD boasts a
distinct advantage—its non-invasiveness. Our malware detec-
tion unit can function independently as a standalone module
within the system. This positions it as an excellent choice
for heterogeneous IoT systems, where the system integrator is

trusted but lacks access to individual components, especially
the CPU, to implement additional security measures.

In contrast to the latter, SIDEGUARD tackles a notably
more intricate challenge: identifying dynamic malware within
a regular application. The key distinction lies in the multitude
of potential applications operating on a device, making naive
solutions or those reliant solely on representation and/or ma-
chine learning less accurate. Instead, SIDEGUARD introduces
a co-design approach, combining software and signal analysis.
By leveraging program behavior insights, it devises a precise
yet efficient detection mechanism.

V. CONCLUSIONS

This study introduced a novel non-invasive technique for
identifying malware by examining the power consumption on
the chip. The main concept was to indirectly gauge power
using tailored power sensors integrated into an embedded
FPGA, a component commonly found in modern heteroge-
neous systems. A significant advantage of our approach is that
the malware detection doesn’t necessitate CPU modifications,
resulting in zero impact on the main CPU’s performance,
power, and area. The results indicated that our method can
achieve >95% accuracy in detecting real-world malware.
With the increasing adoption of heterogeneous IoT systems,
our method emerges as a resilient choice for the evolving
landscape of future hardware systems. Its adaptability and
efficiency make it a promising solution amidst the growing
prevalence of IoT and CPS systems and their security vulner-
abilities.

REFERENCES

[1] M. Antonakakis et al., “Understanding the mirai botnet,” in 26th
{USENIX} security symposium, 2017, pp. 1093–1110.

[2] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” ACM SIGARCH computer architecture news,
vol. 41, no. 3, pp. 559–570, 2013.

[3] K. Basu et al., “Preempt: Preempting malware by examining embedded
processor traces,” in DAC, 2019, 2019, pp. 1–6.

[4] K. N. Khasawneh et al., “Rhmd: Evasion-resilient hardware malware
detectors,” in MICRO, 2017, 2017, pp. 315–327.

[5] I. Giechaskiel et al., “C 3 apsule: Cross-fpga covert-channel attacks
through power supply unit leakage,” in S&P, 2020. IEEE, 2020, pp.
1728–1741.

[6] A. Boutros et al., “Neighbors from hell: Voltage attacks against deep
learning accelerators on multi-tenant fpgas,” in ICFPT, 2020. IEEE,
2020, pp. 103–111.

[7] Z. Xie, S. Li, M. Ma, C.-C. Chang, J. Pan, Y. Chen, and J. Hu,
“Deep: Developing extremely efficient runtime on-chip power meters,”
in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, 2022, pp. 1–9.

[8] H. Ma et al., “On-chip trust evaluation utilizing tdc-based parameter-
adjustable security primitive,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 40, no. 10, pp. 1985–
1994, 2020.

7

[9] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel
attacks,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 229–244.

[10] C. Konstantinou et al., “Hpc-based malware detectors actually work:
Transition to practice after a decade of research,” IEEE Design & Test,
vol. 39, no. 4, pp. 23–32, 2022.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ACM SIGPLAN Notices,
vol. 37, no. 10, pp. 45–57, 2002.

[12] N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral
profiling: Observer-effect-free profiling by monitoring em emanations,”
in 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2016, pp. 1–11.

[13] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“Eddie: Em-based detection of deviations in program execution,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017, pp. 333–346.

[14] J. Feng, T. Zhao, S. Sarkar, D. Konrad, T. Jacques, D. Cabric, and
N. Sehatbakhsh, “Fingerprinting iot devices using latent physical side-
channels,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 7, no. 2, pp. 1–26, 2023.

[15] N. Sehatbakhsh, A. Nazari, M. Alam, F. Werner, Y. Zhu, A. Zajic, and
M. Prvulovic, “Remote: Robust external malware detection framework
by using electromagnetic signals,” IEEE Transactions on Computers,
vol. 69, no. 3, pp. 312–326, 2019.

[16] M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in WWC-4, 2001. IEEE, 2001, pp. 3–14.

